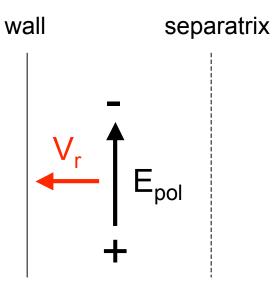
Electrode Biasing Experiment for Local SOL Control In NSTX

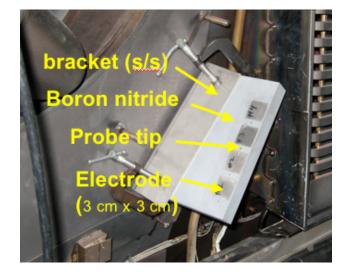
S.J. Zweben, C.E. Bush, R.J. Maqueda, R.J. Marsala, L. Roquemore, Y. Raitses R.H. Cohen, D.D. Ryutov, M. Umansky (*LLNL*)

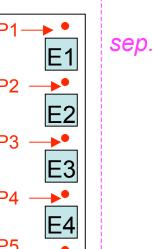

many thanks to:

M. Bell, J. Boedo, R. Kaita, B. Scott, V. Soukhanovskii, B. Stratton

NSTX Results Review July 23, 2007

SOL Control by Edge Biasing

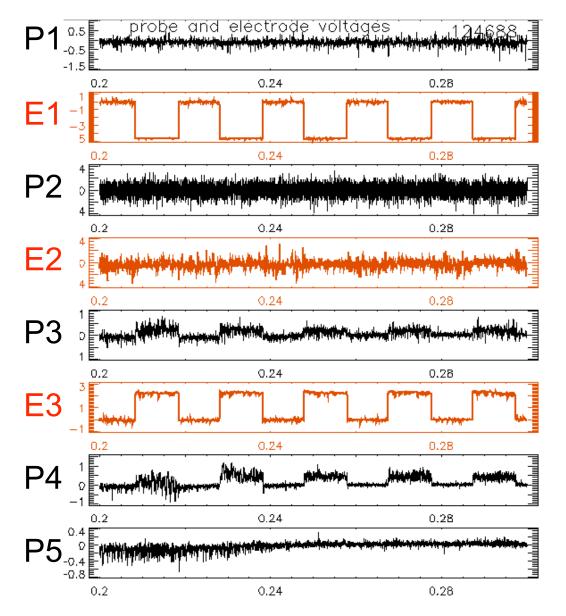

- Create localized poloidal electric fields in SOL to make local radial V_r=E_{pol}xB drift to drive plasma outward [Ryutov, Cohen et al, PPCF (2001)]
- If V_r is larger than the outward turbulent transport speed, local SOL width will be increased (particles and heat)


- $V_r(cm/sec) = 10^8 E_{pol}(V/cm)/B(G)$
- turbulent 'blob' speed \leq 1 km/sec

⇒ need only $V_r \sim 5$ V/cm to broaden SOL in NSTX (because of low B)

BEaP (Biased Electrodes and Probes)

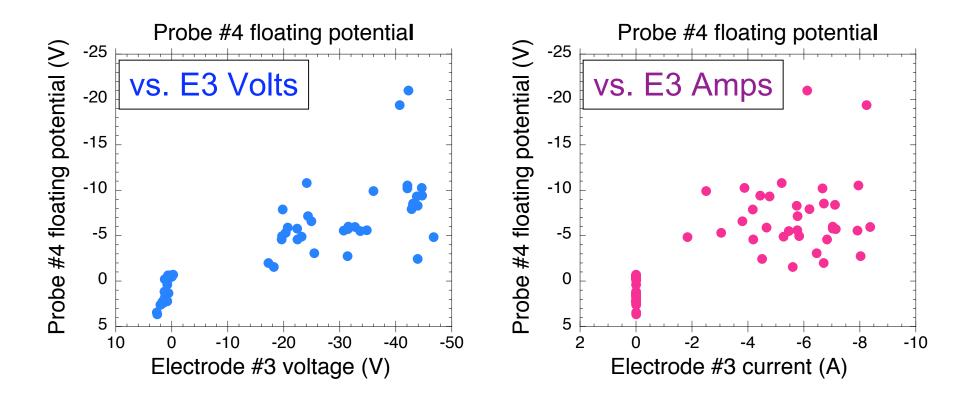
P1 outer wall P2 **P3** P4 P5


<u>Shot list for 2007 run (XMP51, XP744):</u>

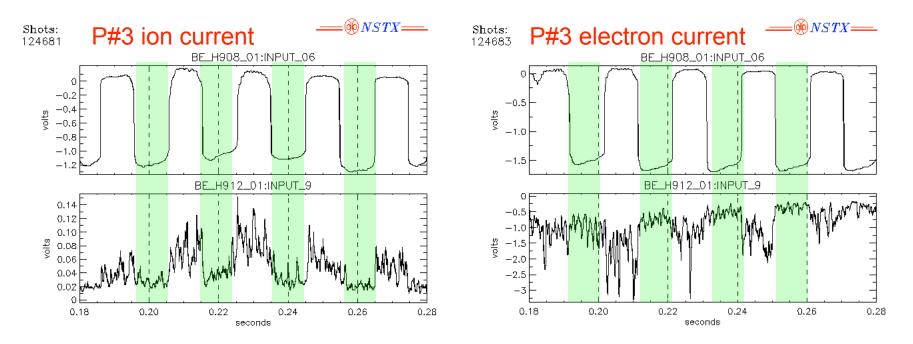
Shot	Electrode #1	Electrode #2	Electrode #3	probes
123678	0	0	off	swept
123679	-20 volts	-20 volts	off	swept
123680	0	0	off	swept
124059	0	0	off	+50 volts
124059	-70 volts	-70 volts	off	+50 volts
124061	-70 volts	-35 volts	off	+50 volts
124062	-35 volts	-70 volts	off	+50 volts
124676	0	-90 volts	0	swept
124677	0	-95 volts	+10 volts	swept
124678	0	-95 volts	+20 volts	swept
124679	0	-95 volts	+25 volts	floating
124680	0	-95 volts	+30 volts	floating
124681	0	-95 volts	+30 volts	-50 volts
124682	0	-95 volts	+30 volts	+50 volts
124683	0	-95 volts	+40 volts	+50 volts
124684	0	-95 volts	+40 volts	floating
124688	-95 volts	0	+50 volts	floating

electrode #4 hard grounded for all shots (without any current monitor)

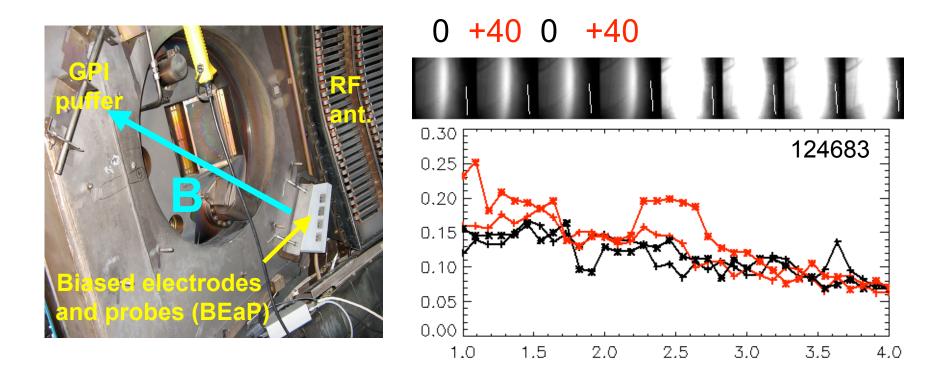
local electric field up to ~150 V/cm !


Probe Floating Potential Response

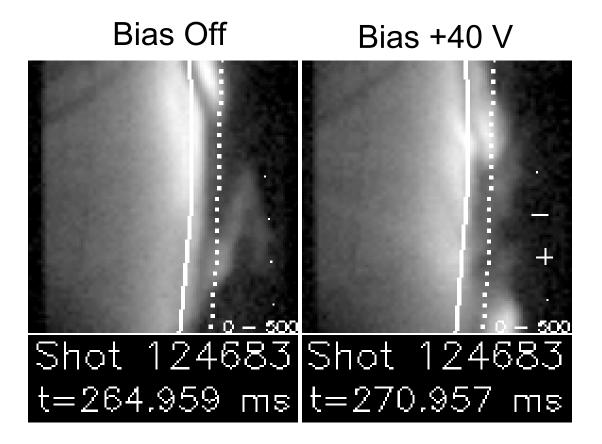
- floating potential of probes near + bias electrode go up ~20% of voltage on electrode
- floating potential of probes near - bias electrode has much smaller change (~ 0)
- => positive electrode affects local V_f


negative electrode does not

Floating Potential vs. Electrode (I,V)


- Probe responds more to electrode voltage then current
- Some other factor(s) determining probe voltages changes

Probe Saturation Current Response


- I_{sat} (both i+ and e-) decreases with positive electrode bias
 - ⇒ local density *decreases* with positive electrode bias (may also be some effect due to local V_f change)

<u>GPI D</u> $_{\alpha}$ **Profile Response to Bias**

- No significant change in main D_{α} profile (near separatrix)
- Some increase in D_{α} between electrodes #2 and #3 ?

GPI Turbulence Response to Bias

• Turbulence 'sucked' between electrodes #2 and #3 ?

Summary of Experimental Results

- Positive bias has *some effect* on the local density and floating potential measured by nearby Langmuir probe
- Bias seems to have some effect on the local D_{α} profile and turbulence seen by the GPI diagnostic ~1 m away

Open questions:

- What determines change in plasma potential during bias ?
- How can we make a bigger change in local SOL with bias ?