Modeling of Blob Formation in NSTX Edge Turbulence

T. Stoltzfus-Dueck, J. A. Krommes, S. J. Zweben

Princeton Plasma Physics Laboratory

Stoltzfus-Dueck Modeling of Blob Formation in NSTX Edge Turbulence

· < 프 > < 프 >

Blob Formation

- Blob propagation: significant understanding
- Blob formation: still poorly understood

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Goal: Study blob formation with reduced turbulent models
 - Numerically simulate simplified 2D, three-field models
 - Analyze results with coherent structure analysis techniques borrowed from fluid turbulence
 - Carefully examine structural properties of further-reduced models, including a novel one-field closure

Parallel coupling

- Inside the separatrix, magnetic field lines cover surfaces
 - ▶ k_{||} = 0 generally not allowed, except for zonal modes
- Electron parallel force balance exerts a controlling influence
 - seeks $abla_{\parallel} \left(\tilde{n} ilde{arphi}
 ight) = \mathbf{0}$

Figure: Effectiveness of parallel coupling, shown in GPI data.

Importance of nonadiabatic fluctuations

 φ̃ ≠ ñ fluctuations tend to be small but very important because:

 $\begin{array}{c} & \widetilde{\psi} &$

- major dissipation channel
- determine gradient drive

Figure: Phase relations for the drift wave. Left: $\tilde{\varphi} = \tilde{n}$: wavelike, no growth. Right: $\tilde{\varphi}$ trails \tilde{n} , growth.

Parallel electron physics

- Drift wave nonlinearities and curvature drive stir up nonadiabatic fluctuations
- Ohm's Law dissipates them
 - ► If turbulence is resistive, nonadiabatic fluctuations damp with parallel diffusion $D_{\parallel} = v_{te}^2 / \nu_e$
 - ► If turbulence is electromagnetic, physics is Alfvén wave with slow damping $\propto \nu_e k_\perp^2 \sigma_0^2$

Nonadiabatic drive/damp balance sets turbulent drive rate

$$\hat{eta}\partial_t ilde{m{A}}_{\parallel}+\hat{\mu}m{d}_t ilde{j}_{\parallel}=
abla_{\parallel}\left(m{
ho}_{m{e}}+ ilde{m{
ho}}_{m{e}}- ilde{arphi}
ight)-m{C} ilde{j}_{\parallel}$$

伺 とくき とくき とうき

Parallel electron physics in NSTX

$$\hat{eta}\partial_t \tilde{A}_{\parallel} + \hat{\mu} d_t \tilde{j}_{\parallel} =
abla_{\parallel} \left(p_e + \tilde{p}_e - \tilde{arphi}
ight) - C \tilde{j}_{\parallel}$$

Quantity	Edge	Separatrix	SOL
$\hat{\epsilon}^2 \doteq \left(k_{\parallel} c_s / \left(c_s / L_{\perp} ight) ight)^2 \sim \left(L_{\parallel} / L_{\perp} ight)^2$	1600	1600?	1600?
$\hat{eta}\doteqeta_{ extsf{e}}\hat{\epsilon}^{2}=\left(\left(extsf{c}_{s}/L_{ot} ight)/k_{\parallel} extsf{v}_{A} ight)^{2}$	14	0.3	.04
$\hat{\mu} \doteq \left(m_{e}/M_{i} \right) \hat{\epsilon}^{2} = \left(\left(c_{s}/L_{\perp} \right)/k_{\parallel} v_{te} \right)^{2}$	0.5	0.5	0.5
$C \doteq 0.51 rac{m_e}{M_i} rac{ u_e}{c_s/L_\perp} \hat{\epsilon}^2 = 0.51 rac{c_s/L_\perp}{k_\parallel^2 v_{te}^2/ u_e}$	0.1	1.1	3.3

- NSTX mostly electromagnetic in edge, electrostatic in SOL
 - even in near SOL, behavior electromagnetic for larger perpendicular scales
- ▶ Near SOL has $\nu_{SOL}^* \doteq \lambda_{mfp}/L \sim 10^{-16} n_u L/T_{su}^2 \gtrsim 10$, probably sheath-limited