

Results from MHD XP's 711 and 724

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL IINI Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

Presented by: J.E. Menard, PPPL

With contributions from D. Gates

NSTX Results Review

July 23-24, 2007 Princeton Plasma Physics Laboratory

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvoao U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR. Czech Rep **U** Quebec

NSTX 2007 Results Review– J. Menard

ISD XP-711 - Improved break-down scenario for higher q during I_P ramp

- Found PF2 and PF1A coil currents that can allow stable high elongation and diverted plasma by t=45ms
 H-mode measured as early at t=65ms for a few shots
- New breakdown incorporated into XP-710 shots
- Starting from XP-711 → XP-710, XP-724 successfully linked PF1B LSN early H-mode with rtEFIT controlled LSN

• New breakdown scenario successful in increasing early safety factor values (demonstrated in XP724, XP710)

- I_P actually increased with addition of 1kA of PF2 current
 Consistent with improved null quality at breakdown
- High PF1A and PF2 eventually degrade null, breakdown lost

116313 122383 Divertor coil current during break-down enables increased ramp-up elongation and very early diverting

 Plasma shape during I_P ramp with old breakdown

Plasma shape w/ new breakdown

NSTX

Very early H-mode possible with early diverting

- Found PF2 and PF1A coil currents that can allow stable high elongation and diverted plasma by t=45ms
- H-mode measured as early at t=65ms for a few shots
 - Very early H-mode initially not reproducible due to radial position oscillation from t=40-100ms (no H-mode when inner gap is small)
 - Reliable early H-mode (70ms) eventually obtained
 - But, power threshold higher than in previous years (up to 6MW)
 - Due to increased He, lower density, or metallic impurities?

XP-724 motivation: Fully non-inductive scenario requires higher confinement, higher *q*, strong plasma shaping

- Need 60% increase in T, 25% decrease in n_e
 - Lithium for higher τ_{E} & density control?
 - 20% increase in thermal confinement
 - 30% increase in HH₉₈
 - Core HHFW heating

• Want $q_0 \approx q_{min} \approx 2.4 \Rightarrow$ higher with-wall limit

- Higher κ for higher q, β_P , f_{BS}
- High δ for improved kink stability

ISD XP-724 - Stability and NICD limits with lower density and higher q_{MIN}

- Demonstrated confinement increase with LITER
 - Reduced internal inductance, higher elongation, etc
- Demonstrated significant density pumping with LITER
 - Obtained at highest evaporation rates = 35-40mg/s
 - But, we did not use these high rates for most experiments
 - LITER ran out of Lithium and had to be refilled during run
 - Concern over iron impurities coincident with LITER operation
 - Not enough time to develop fueling of very low density discharges
- q_{min} elevated with high- κ breakdown + LITER
- Resultant q profile apparently unstable likely 2/1 NTM
 - Poloidal beta limited to < 1.4 (not a β_N limit)
 - But need to determine eigenstructure for mode identification

High LITER evaporation rates (30-40mg/min) with 7 min He glow can significantly increase D pumping

LITER \rightarrow Achieve same β_N and flux consumption of previous long-pulse discharges with 1/3 less NBI power (using NBI A+C) and at lower density

• ISD Goal: try to achieve constant $\overline{n_e}$ in flat-top (4x10¹⁹m⁻³) using shoulder and SGI fueling

LITER \rightarrow Achieve lower I_i and higher κ compared to reference

• ISD Goal: try to achieve $\kappa = 2.6$ LSN at high β_N and high δ

LITER shots that achieve high β_N have $q_{min} \rightarrow 1.3$ with nearly monotonic q profile

- High β_N LITER shots similar to high β_N shots of 2005 which
 had q_{min} < 1.5
 - High shear at q=2 surface beneficial for TM stability?
- Shots avoid low-f tearing activity during high β_N phase.

High-κ breakdown scenario + LITER (15-20mg/min) successfully increased q early in discharge

• In first 300ms, $q_{min} > 3$, $I_i = 0.45$, $\kappa = 2.6-2.7$

- Previous long-pulse shots (116313) had $q_{min} \rightarrow 2$ by t=0.2s

ISTX

• $q_{min} = 2$ enters plasma at t=400-500ms, $I_i < 0.5$, $\kappa = 2.6-2.8$

Plasma shape achieved very close to desired target shape

- Shape development needed to match target:
 - Decrease outer gap
 - Increase upper δ
 - Increase squareness

R(m)

- $q_{min} = 2$ radius is near $\rho_{pol} = 0.45-0.55$ late in both discharges
 - Carbon impurity rotation frequency near this radius = 17-22kHz

Core n=1 MHD activity associated with q=2 surface may explain $\beta_P = 1.3$ -1.4 saturation in high q_{min} discharges

- n=1 mode propagation frequency \approx 20kHz consistent with rotation frequency near q=2 surface
 - Need to determine eigenstructure of mode is it NTM or other?

