

XP 730 - Effect of Resonant Magnetic Perturbations on ELMs in NSTX

T. Evans¹, S. Kaye², <u>R. Maingi³</u>

General Atomics
Princeton Plasma Physics Laboratory
Oak Ridge National Laboratory

NSTX Results Review Princeton NJ July 23-24, 2007

Page 1

Motivation, Background and Goals

- Large ELM mitigation and/or suppression required to prevent excessive PFC damage in ITER
- DIII-D very successful at suppressing Type I ELMs with n=3 Resonant Magnetic Perturbations (RMP), using internal coils
- Limited success in affecting edge stability with external C-coils
- Recent success in JET: ELM mitigation with n=1 RMP, external coils
- NSTX error-field correction and resistive wall mode coils are external to vacuum vessel, but closer to plasma boundary than DIII-D's C-coil
 - Previous NSTX XP in 2005 showed brief periods of affecting ELMs, but the RMP effect could not be separated from recycling changes

Goals

- Conduct discharges with reproducible ELMs
- Apply RMP to gauge effect on ELMs

Edge stability can be affected by RMP, i.e. ELMs can be de-stabilized

- EFCC current scan with n=3:
 - $I_p=0.8 \text{ MA}, B_t=0.5 \text{ T}, P_{NBI}=4 \text{ MW}, \delta_r^{sep}=-0.5 \text{ cm}, \kappa=1.8, \delta_l=0.5$
 - no ELM mitigation
 - Clear signs of magnetic braking at higher EFCC current
- Fueling scan at $I_{EFCC}=1.8$ kA : no ELM mitigation
- Various timing comparisons: no ELM mitigation
- EFCC current scan with n=3, opposite phase, EFCC before ELMs start
 - $I_p=0.8 \text{ MA}, B_t=0.5 \text{ T}, P_{NBI}=4 \text{ MW}, \delta_r^{sep}=-0.5 \text{ cm}, \kappa=1.8, \delta_l=0.5$
 - ELM de-stabilization observed
- ELM-destabilization also observed in other XPs

-
$$I_p=1.0 \text{ MA}, B_t=0.45 \text{ T}, P_{NBI}=4 \text{ MW}, \delta_r^{sep}=-0.5 \text{ cm}, \kappa=2.0, \delta_l=0.7$$

RMP can de-stabilize ELMs in low δ_1 discharges

Page 4

RMP can also de-stabilize ELMs in high δ_l discharges

Page 6

Preliminary tanhfits show peak pressure gradient comparable with and without RMP

Summary and Plans

- Edge stability can be affected by application of RMPs in NSTX
 - Large ELMs can be de-stabilized
- Plan to run TRIP3D to determine field pattern, followed by edge stability analysis with e.g. ELITE
- Role of rotation in ELM stability merits detailed study, i.e. correlation of reduced edge rotation and ELM stability