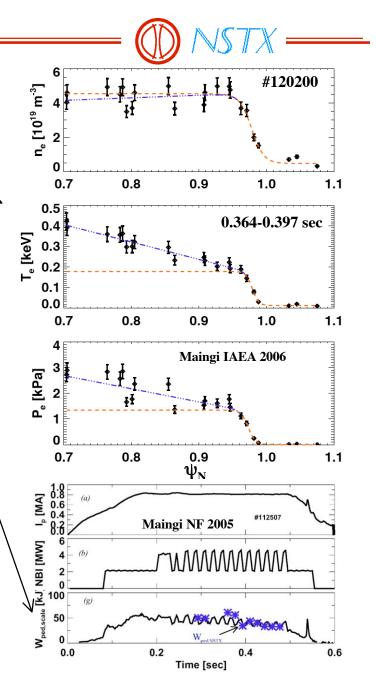


XP 732 - Reproducing the Enhanced Pedestal H-mode in NSTX

R. Maingi¹, R. Bell²

1 Oak Ridge National Laboratory
2 Princeton Plasma Physics Laboratory

NSTX Results Review Princeton NJ July 23-24, 2007



Motivation

- Typical $T_{e,i}^{ped} \sim 100-300 \text{ eV}$ and $P_e^{ped} \sim 1-3 \text{ kPA}$
- NSTX data agree roughly with Guzdar PoP 2005 scaling for T_{ped}:

 $T_e^{ped} + T_i^{ped} \sim B_t^2 / (q^2 R (n_e^{ped})^{3/2}) \sim R/a$

- NSTX data agree with Cordey's NF '05 two term model for W_{ped} scaling
- Enhanced Pedestal H-mode (EPH) observed with $T_{e,i}^{ped} \le 650 \text{ eV}$, $P_e^{ped} \le 8 \text{ kPa}$, with a pedestal in to $\psi_N \sim 0.8$, with pedestal $v_e^* \sim 0.1$

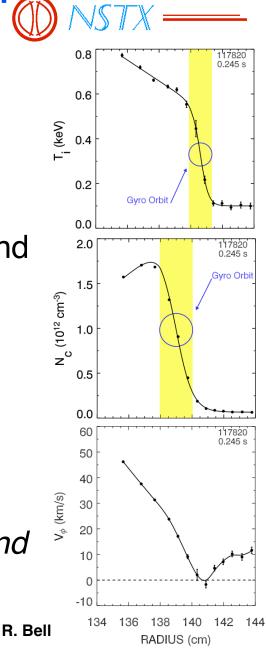
Transition to an Enhanced Pedestal H-mode enables pedestal $v_{e,ped}$ * ~ 0.1 in NSTX, with high H_{H89P} 2.7 1.5 #117820 LRDFIT06 5 [ΥΝ] -^α 0.5 1.0 n [10¹ ^{m - 3}] P_{NBI}/10 [MW] 2 0.0 t=0.248 300 1 t=0.165 see EPH-mode W_{мнD} [kJ] H-mode -0.25 -0.2 -0.15 -0.05 0 0.05 200 -0.1 1.2 100 8.0⁸ [kev] 0.6 0 2 #117820 0.4 Div. D_{α} [au] #117820 t=0.248 see LRDFIT06 0.2 t=0.165 se 0 0.2 -0.15 -0.1 -0.05 0 -0.250.05 1.4 0 0 t=0.245 sec 1.2 0.3 **☆・t=0.165 sec** 0.0 0.1 0.2 Time [sec] 8.0 [€] 0.0⁻[ke/ Pedestal $v_e^* \sim 0.5$ -1 in normal H-mode 0.4 Hypothesize that extreme reversed #117820 0.2 LRDFIT06 shear restricts $\beta_N \leq 4.5$ in this discharge

-0.25

-0.2

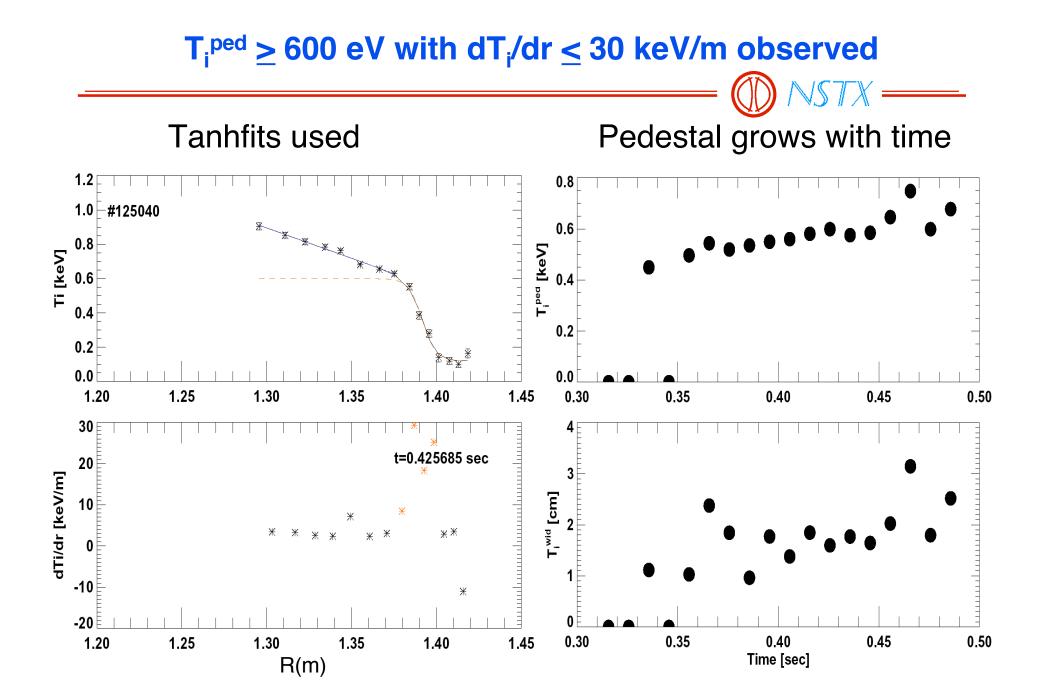
-0.15

-0.1 R-R_{sep} [m]


-0.05

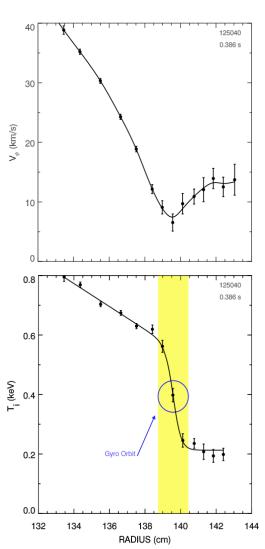
0

0.05


Enhanced Pedestal H-mode barrier width size comparable to gyro-diameter

- Edge scale lengths for both T_i and n_C approach the gyro-diameter during EP Hmode
- Ion gyroradius $\rho_i \sim 0.7$ cm relative to IBI, owing to combination of local $T_i \sim 350$ eV and and IBI ~ 0.35 T at outer midplane
 - Approaching or at the fundamental limit on the gradient scale length?
- Note that ion poloidal gyroradius 100% higher, i.e. $\rho_{\rm i}$ ~ 1.4 cm
- Basic transport physics can be studied in EPH-mode, owing to large gyro-diameter and good spatial resolution of plasma profiles

One discharge with an Enhanced Pedestal H-mode observed during XP 732



Summary

- One discharge with very large T_i gradient observed in XP 732
- Similar to other Enhanced Pedestal discharges in that the peak T_i gradient occurs where v_{ϕ} is lowest 1-3 cm radially inside of the separatrix
 - Working hypothesis: breaking (due to island?) drags v_φ down near edge, causing E_r + v_θB_φ ~ dp_i/dr (+ v_φB_θ)
- Candidate EP discharges from 2007 (when v_{θ} available) being identified (R. Bell)

