

Alfvén Cascade modes at high β_e in NSTX — structure and suppression

NA Crocker, ED Fredrickson, NN Gorelenkov and many others ... NSTX Results and Theory Review July, 2007

XP 706: β_e scaling of Alfvén Cascade modes*

- excited by fast-ions (NB ions, fusion α's,...) in reversed-shear
- can transport fast-ions
- ITER plans reversed-shear operation
- Theory predicts suppression at high $\beta_{\rm e}$
- NSTX reaches high β_e
 - Spherical tori have traditionally not seen ACs
 - β_{e} suppression first reported on NSTX

Alfvén Cascade modes observed in NSTX

- Series of upward frequency sweeps observed (top right)
 - increasing toroidal mode numbers
- Doppler corrected f (bottom right) shows upsweep followed by down-sweep
 - Doppler shift resulting from plasma rotation measured at the assumed mode location near q_{\min} , R = 1.25 m
 - Down sweep theoretically more strongly damped
- Up-sweep consistent with Alfvén Cascade (AC) mode: ACs sweep up from f_{min} as q_{min} falls (bottom right).
 - Predicted AC chirp start frequency* is f_{GAM} ; due to coupling with GAMs

$$f_{GAM}^{2} = \frac{1}{(2\pi)^{2}} \frac{2C_{S}^{2}}{R^{2}} \left(1 + \frac{7}{4} \frac{T_{i}}{T_{e}}\right)$$

- The red curve is the interpolated n = 2 f_{GAM} evolution
- the black is the local f_{GAM} scaled by 0.9 to match the data

AC frequency depends on $q_{min}(t)$

• Using measured n and reasonable m, $q_{min}(t)$ inferred from AC frequency

- choice of m for multiple modes must yield consistent $q_{min}(t)$
- consistent $q_{min}(t)$ given by (m,n) = (5,2), (4,2)+(2,1), (5,3), (3,2), (4,3), (5,4)
- times of mode frequency minima (sweep start) marked with black squares

 $q_{min} = \frac{mV_{Alfvén}}{nV_{Alfvén} + R(\omega_{mode}^2 - \omega_{min}^2)^{1/2}} \qquad \omega_{min} \text{ from observation } (\sim 2\pi f_{GAM})$

 Inferred q_{min}(t) compares well with q_{min}(t) from MSE (from same and similar shots)

ACs seem to peak near q_{min} as expected

- Internal structure of modes measured with reflectometers
- q profile from similar shows minimum at R ~ 1.25 m.
- Structure consistent with localization at q_{min}
 - Strong localization for highest *n* mode, as expected from theory

ACs suppression observed at high β_e

- Theory* predicts AC frequency sweeps from f_{min} (= f_{GAM}) to f_{TAE} ; can derive critical β_e for suppression by setting $f_{GAM} = f_{TAE}$ $\omega_{min}^2 = 4q^2R^2 2C_s^2 (1 7T_i) + 2c_s^2 (1 7T_i)$
 - $\frac{\omega_{\min}^2}{\omega_{TAE}^2} = \frac{4q^2R^2}{V_A^2} \frac{2C_s^2}{R^2} \left(1 + \frac{7}{4}\frac{T_i}{T_e}\right) = 4q^2\beta_{e,crit} \left(1 + \frac{7}{4}\frac{T_i}{T_e}\right) \approx 1$
- Predicted $\beta_{e,crit} \approx (20\% 25\%)/q^2$ matches observation
 - Prediction includes small empirical correction factors for ω_{\min} and ω_{TAE} from experimental spectra

0.35

*Breizman, et al. [Phys. Plasmas 12 (2005) 112506]

Structure measurements will be compared with NOVA-K calculation

- Three fixed-frequency reflectometers measure radial structure of mode (low field side)
 - All three reflectometers use same antennae: no geometrical phase shifts
- NOVA-K includes GAM coupling
 - calculates AC structure and frequency

FIReTIP Tangential Interferometers Sensitive to ACs -Contribute to NOVA-K comparison

- Tangential FIR interferometers measure density perturbation across plasma
 - constrain comparison of measurement with calculated structure
- Three chords show significant coherence in 123810 (chords with R_{tan} < 1m)

Multiple soft X-ray chords also see ACs

- Multiple soft x-ray chords highly coherent with edge magnetics (δb)
- Possible uses:
 - unfold δT_e (w/modeling, δn_e measurement and NOVA-K calculation)
 - cross-check of γ (ratio of specific heats); ACs dispersion relation sensitive to γ (coupling to GAM)

Conclusions

- Alfvén Cascade modes observed and verified in NSTX
 - mode frequencies sweep from ~ f_{GAM} to ~ f_{TAE}
 - $\cdot q_{min}(t)$ determined from frequency sweep agrees with MSE
 - localized near q_{\min}
 - suppression observed near predicted β_e (where $f_{GAM} \sim f_{TAE}$)
- Multiple internal measurements of AC structure obtained
 - local density fluctuations: three reflectometers measure
 - chord integrated density fluctuations: three tangential interferometers
 - SXR emission: temperature fluctuations (?)
- Calculated mode structure (NOVA-K) will be compared with measurements
 - NOVA-K inlcudes GAM coupling:
 - calculates frequency
 - predicts suppression at high β_e

NOVA-K solves linear ideal MHD stability equation

- Solves in "perturbative" limit
 - fast ions affect growth rate, not mode structure and frequency
- Equilibrium taken from experiment:
 - plasma geometry
 - pressure profile
 - q profile
- Essumes no rotation
 - must account for rotation in experiment typically, mode considered Doppler-shifted by rotation at mode peak
- γ (ratio of specific heats) is free parameter

NOVA-K calculates frequency and structure of Alfvén eigenmodes

• Typical solutions (middle right) peak near region of q_{min} , in agreement with reflectometer measurements

AC mode structure probed by internal fluctuation diagnostics

- Multiple reflectometers measure local density perturbation (bottom left)
 - radial structure of mode (low field side)
- Tangential FIR interferometers density perturbation across plasma (bottom left)
 - constraint on comparison with predicted structure
- Multi-chord Soft X-ray arrays (bottom right)
 - Possible temperature fluctuations

