

<u>XP728: RWM active stabilization and</u> <u>optimization – ITER scenario</u>

S.A. Sabbagh¹, R.E. Bell², J.E. Menard², D.A. Gates², J.M. Bialek¹, B. LeBlanc², F. Levinton³, K. Tritz⁴, H. Yu³

¹Department of Applied Physics, Columbia University, New York, NY

²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA ³Nova Photonics, Inc., Princeton, NJ, USA ⁴Johns Hopkins University, Baltimore, MD, USA

NSTX Results Review

July 24th, 2007 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching U Quebec

Department of En

RWM feedback studied with expanded sensor set, reduced V_d

Goals

- Investigate variations of control sensor combinations to optimize RWM stabilization at low plasma rotation, ω_{ϕ} (more robust, reach higher β_{N})
 - Use upper/lower RWM B_r, B_p sensors for feedback (ran out of time in 2006)
 - Examine possible poloidal deformation of RWM during feedback
- Investigate active stabilization of recent plasmas that exhibit unstable RWM activity leading to discharge termination at <u>high</u> ω_{ϕ} .
- Explore possible stable region at $\omega_{\phi} < \omega_{*i}$ with feedback is turned off
- □ Investigate RWM active stabilization of low ω_{ϕ} plasma with superposed time-averaged n = 1 error field correction + n = 3 magnetic braking

(Fredrickson, Garofalo suggestion from 2006, but no run time)

- □ Measure n =2-3 RFA, attempt to destabilize n = 2 RWM with n = 1 stable
- Introduce and study effect of applied time delay on feedback (ITER support)
 - Depends on control system time delay capability in 2007

Addresses

NSTX milestone R(07-2), NSTX PAC request

ITPA experiment MDC-2, ITER issue card RWM-1, USBPO MHD task

RWM active feedback system now uses more sensors

- Stabilizer plates for kink mode stabilization
- External midplane control coil closely coupled to vacuum vessel
 - Similar to ITER port coil designs
- New sensor combinations
 - \square B_{pu} + B_{pl} (used B_{pu} in past)
 - \square B_{ru}; B_{ru} + B_{rl}
 - \square B_{pu} + B_{pl} with spatial offset
 - All sensors in combination

Feedback phase continues to be a key feedback variable

- Recreated past active feedback with B^{upper} sensors
 - Plasma rotation slowed using n = 3 non-resonant magnetic braking
- Completed feedback phase scan using with B_p^{lower} + B_p^{upper} sensors
- Key detail in mode dynamics during feedback – further analysis needed
 - Poloidal deformation of mode reported in 2006 PRL seen again with upper sensors; changed by upper/lower sensor feedback

Past VALEN-3D analysis of optimal relative phase $\Delta \phi_f$ for active control being expanded for XP728

Relative phase (VALEN) (deg)

Past results ("midplane sensors")

- □ Unfavorable $\Delta \phi_f$ drives mode growth
- □ Stable range of $\Delta \phi_f$ increases with increasing ω_{ϕ}
- NEW analysis uses actual experimental sensor positions
 - Stabilization found without the need for plasma rotation (B_p sensors)
 - Further calculations will model all sensor combinations used

Upper / lower B_r sensors for feedback for first time

- Determined feedback phase for best response with Br^{upper} + Br^{lower} sensors
 - Detailed feedback dynamics, apparent poloidal deformation of mode
- Maximum n = 1 B_r amplitude plasma can tolerate $\sim 8 - 9$ G
 - Analogous n = 1 B_p sensor value of about 15–20 G
- Feedback using Br^{upper} + Br^{lower} sensors at high rotation available as tool for other XPs

XP728 filled in rotation profiles produced during RWM feedback

2007 data - range of rotation profiles for RWM analysis

- **D** Broader ω_{ϕ} in some cases
- Created RWM *passively* stable plasma with zero rotation at q = 2 surface
 - Supports past NSTX data showing rotation profile important to stability, not just at single q surface
- Unstable RWM observed at high rotation (~ 40 kHz core)
 - Is the mode observed an RWM?
- No indication, so far, of stable low rotation state, feedback off
 - Rotation may not have been slowed enough; analysis of trapped particle precession stabilization may tell

Further sensor combinations used for feedback

- Feedback phase scan for B_p^{lower} + B_p^{upper} sensor average, 180[°]degree spatial offset
 - favorable 270 degree feedback phase expected by simple RWM theory
 - B_p sensor amplitude modulation decreases in frequency during mode onset
- Feedback with full B_r, B_p sensor set
 - XP702 plasma stable at high V_e to 1.3s with feedback^e
 - Similar plasma showed instability – again showing mode amplitude modulation decrease in frequency