

<u>XP743: Island-induced neoclassical</u> toroidal viscosity and dependence on v_i

S. A. Sabbagh¹, K.C. Shaing², et al.

¹Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY

²University of Wisconsin, Madison, WI

NSTX Results Review

July 24th, 2007 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching U Quebec

Department of En

Investigate the role of islands and v_i in neoclassical toroidal viscosity rotation damping physics

Goals

- Test theory of island-induced neoclassical toroidal viscosity (INTV)
- Compare to theory of drag due to electromagnetic torque
- Investigate damping over range of ion collisionality and island width to determine affect on rotation damping and to distinguish theories
- **Examine 1**/ v_i dependence of NTV without internal rotating modes
- Determine percentage of torque from non-resonant NTV vs. INTV vs. electromagnetic
- No run time allocated piggyback data from XPs 739/740
 - Tearing modes generated in these XPs can examine INTV
 - **I** No scan in v_i , but island width changed
 - \square n = 3 non-resonant braking (NTV) used to slow plasma rotation
 - Usual NTV rotation damping observed before island appears
 - Damping explained by linear superposition of NTV and possible INTV?

INTV theory to be compared to experiment

- Leading theories can be distinguished
 - Non-resonant NTV theory
 - Scales as $\delta B^2(p_i/v_i)(1/A)^{1.5}$, yields distinct rotation profile evolution
 - Electromagnetic torque at rational surface (R. Fitzpatrick, Nucl. Fusion 33 (1993) 1049.)
 - Scales as δB^2 (not v_i), rotation profile evolution consistent with observation
 - □ Island-induced NTV (K.C. Shaing, PRL 87 (2001) 245003.)
 - Scales as δB (island width Δw^2) due to toroidicity, depends on v_i
 - Theory can be evaluated quantitatively (as done for NTV)
- Experiment to vary key parameters to test theory
 - n = 1 mode most significant
 - Change v_i at constant q (done successfully in XP619 gas puffing / B_T and I_p variation); consider transitioning out of H-mode
 - Change δB by changing applied n = 1 field
 - Change rotating mode onset time by small change in elongation

Island appears in Te, Ti, and plasma rotation – XP739

- Island evident in USXR, T_e and plasma rotation
 - Narrow, localized rotation damping
 - Rotation evolution shows outward momentum transfer across rational surface and core rotation decay
- Flat-spot in profiles appears just inside the q = 2 surface
- INTV magnitude can at least be evaluated in such cases