Beta-induced Alfvén-acoustic Eigenmode instability observations in NSTX (XP741-1/2day = 1invited EPS talk, PPCF paper)

N.N. Gorelenkov, E.D. Fredrickson, S. Kaye, H. Park Princeton Plasma Physics Laboratory, Princeton

H. L. Berk

Institute for Fusion Studies, Austin, Texas

S. E. Sharapov Euroatom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxfordshire

D. Stutman, K. Tritz,

Johns Hopkins University, Baltimore, Maryland

N. A. Crocker, S. Kubota, W. Peebles

S. A. Sabbagh

University of California, Los Angeles, California

Columbia University, New York

F. M. Levinton, H. Yuh

Nova Photonics, Princeton, New Jersey

NSTX results and theory review, 2007

What is the importance of low-f instabilities?

- New class of instabilities called here Beta-induced Alfvén Acoustic Eigenmode (BAAE) helps to study two fundamental MHD waves: Alfvén and acoustic.
- Energetic particle driven low-*f* MHD instabilities mostly result in radial particle transport:
 - On NSTX, bursting low-*f* modes can lead to a significant loss of injected beam ions (Fredrickson'06).
- MHD spectroscopy application for *q*-profile diagnostic:
 - BAAE can complement MHD spectroscopy in low-, medium- β plasma
 - BAAE maybe the only MHD spectroscopy tool in high- β plasma, such as in STs when RSAEs are suppressed.
- Due to coupling to acoustic branch strong interaction with thermal ions is expected:
 - \Rightarrow strong drive due to fast ions and strong damping due to thermal ions,
 - \Rightarrow potential for energy channeling from beam ions directly to thermal ions (α -channeling, Fisch'93, hot-ion mode, LiWall).

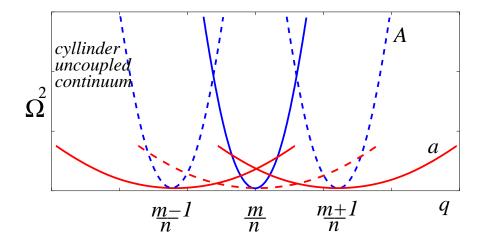
Theory of Alfvén/acoustic continuum

Simplified shear Alfvén and acoustic coupled equations capture main effects in low- β , large aspect ratio plasma, low ω_* , (Cheng, Chance '86):

$$\Omega^2 y + \partial_{\parallel}^2 y + \gamma \beta \sin \theta z = 0 \left(Alfvenic \right)$$
(1)

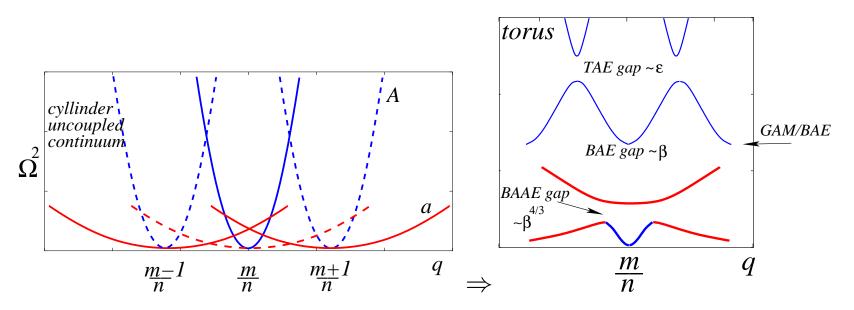
$$\Omega^{2}\left(1+\frac{\gamma\beta}{2}\right)z+\frac{\gamma\beta}{2}\partial_{\parallel}^{2}z +2\Omega^{2}\sin\theta y =0 \left(acoustic\right), \quad (2)$$

where $\Omega \equiv \omega R_0 / v_A$, $y \equiv \xi_s \varepsilon / q$, $\xi_s \equiv \vec{\xi} \cdot \frac{[\mathbf{B} \times \nabla \psi]}{|\nabla \psi|^2}$ and $z \equiv \nabla \cdot \vec{\xi}$, $\hat{k}_{\parallel} \equiv i \partial_{\parallel}$.

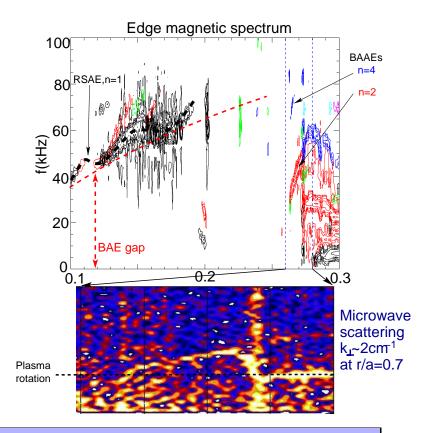

Coupling is due to geodesic curvature: *m* Alfvénic and $m \pm 1$ acoustic harmonics.

Various solutions follows (Winsor'68, Goedbloed'75, Mikhailovski'75,'98, Chu'92, Turnbull '92, Zonca'96, van der Holst'00, Breizman'05, Berk'06):

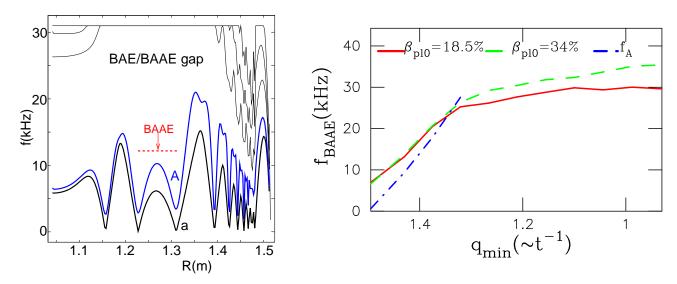
- Pure acoustic modes (AMs) $\Omega^2 = \frac{1}{2} \gamma \beta k_{\parallel}^2$.
- Pure Alfvénic branch $\Omega^2 = k_{\parallel}^2 + \gamma \beta \left(1 + 1/2q^2\right)$.
- GAMs: $\Omega^2 = \gamma \beta \left(1 + 1/2q^2 \right)$ in the assumption of $\Omega^2 \ge \gamma \beta$.
- Modified shear Alfvén branch $\Omega^2 = k_0^2 / (1 + 2q^2)$ exists for $\Omega^2 \ll \gamma \beta$.


Alfvén/acoustic coupling in toroidal equilibrium (schematic)

- Alfvén (A) continuum at low frequency: $\Omega^2 = k_{0,\pm 1}^2$
- Acoustic (a) branch $\Omega^2 = \gamma \beta k_{0,\pm 1}^2 / 2(1+\delta)$


Alfvén/acoustic coupling in toroidal equilibrium (schematic)

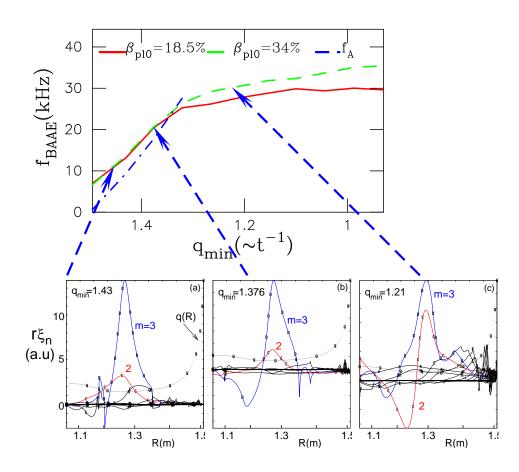
- Alfvén (A) continuum at low frequency: $\Omega^2 = k_{0,\pm 1}^2 / (1 + 2q^2)$ (modified)
- Acoustic (a) branch $\Omega^2 = \gamma \beta k_{0,\pm 1}^2 / 2(1+\delta)$ is coupled via $m \pm 1$ sidebands with modified Alfvén continuum (*m* harmonic) due to geodesic curvature and pressure.


NSTX experiments with MSE address theory/experiment frequency mismatch observed on JET

- Low density $n_e \simeq 3 \times 10^{19} m^{-3}$, $P_{NBI} = 2MW$, $E_{NBI} = 90 keV$ shot #123816.
- 12 channel MSE measures *q* profile (reversed shear).
- Need to test the theory.
- Low frequency oscillations (BAAEs) are seen unstable:
 - upshift frequency evolution from zero (plasma frame).
 - BAAEs reside in wider BAE gap $f \sim \sqrt{eta_{pl}}.$
- High-k component of BAAE at $r/a = 0.7 \Rightarrow$ conversion to KAW (H.Park, EPS07,P2.045).

TAE/RSAEs are suppressed (E. Fredrickson, EPS07) and BAAEs are excited by beams in high- β NSTX plasmas (typically $\beta_{pl} > \sim 15\%$).

Numerically global BAAE modes are found at q_{min} surface in NSTX

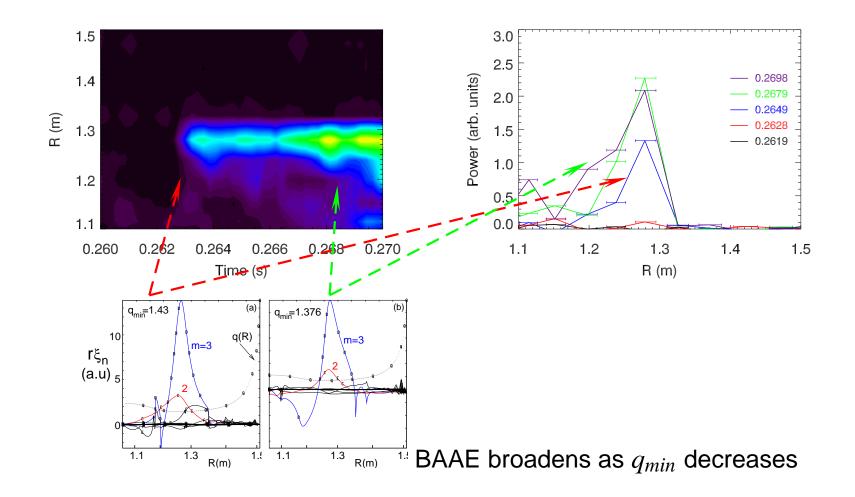


MSE measured inversed q-profile is used in NOVA modeling.

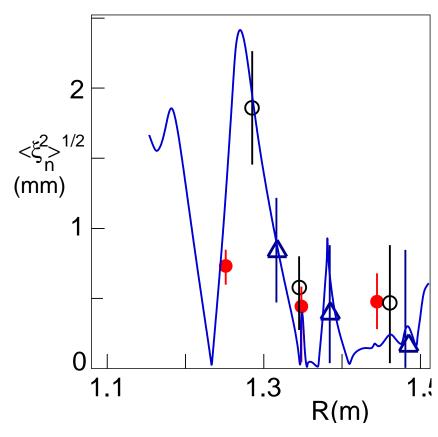
- At high- $\beta_0 = 34\%$, BAE is wide, up to TAE frequency.
- Two Alfvén/acoustic (A/a) continuum branches are found with $\Omega^2 < \gamma\beta$, n = 2
- Low shear BAAE frequency
 - does not depend on β for *q* close to rational
 - continuously transporms to gap mode (due to higher β , strong coupling)

-
$$f_{BAAE}$$
 is close to modified Alfvén branch $f_A = v_A k_{\parallel} / \sqrt{1 + 2q_{min}^2} |_{r=0}$.

NOVA: BAAE broadens radially as q_{min} decreases



- BAAE frequency sweeps as *q*-profile relaxes.
- One dominant harmonic $m = nq_{min} = 3$.
- BAAEs interact with the continuum.

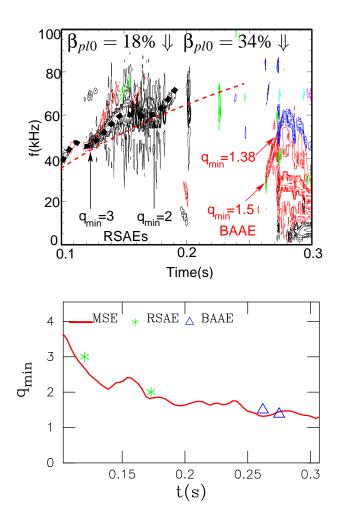

Ultra SXR measures the same radial structure broadening

Raw USXR signal (\sim BAAE structure)

Radial profile evolution

Reflectometer confirms localized BAAE structure

• Three plasmas, 3 points each:


•
$$n_e = 3.3 \times 10^{19} m^{-3}$$

O
$$n_e = 3.6 \times 10^{19} m^{-3}$$

$$\Delta n_e = 3.8 \times 10^{19} m^{-3}$$

- Vertical axis refers to points
 #123816.
- Measurements are taken at signal maximum.
- Internal fluctuations level $\delta n/n \sim 2 \times 10^{-3}$.

In high- β plasma BAAEs may be the only MHD spectroscopy tool for determining q-profile

- RSAE/TAEs can be used to infer q_{min} in low-, medium- β plasma
- Zero BAAE frequency point (plasma frame) indicates rational q_{min} .
- BAAE activity is terminated at t = 0.275s.

Potential interplay of beam driven instabilities with internal m = 3/n = 2 kink-like instability - similar to TAE/sawtooth nonlinear interplay (Bernabei'01, Sharapov'06).

RSAE/TAE and BAAE inferred q_{min} values are in agreement with MSE measurement.

- Theory and numerical analysis show:
 - the existence of geodesic curvature induced gaps in the Alfvén/acoustic continuum below GAM frequency (van der Holst'00),
 - low-n global beta-induced Alfvén/acoustic eigenmodes BAAE are found,
 - BAAEs exist in finite beta plasma within wider BAE gap.
- BAAEs are different from BAEs (Heidbrink-Turnbull-Chu-Huysmans) interpretation as BAAEs require compressibility effect, i.e. sound wave coupling:
 - frequency can sweep up from almost zero in reversed shear.
 - frequency is lower $0 < \Omega < \sqrt{\gamma \beta/2}/q_{min}$ vs. $\Omega = \sqrt{\gamma \beta \left(1 + 1/2q_{min}^2\right)}$ for BAE/GAM.
 - both low shear and gap BAAEs can coexist (similar to RSAE/TAEs)
- Kinetic modification of MHD theory is required for new global modes (Zonca'96, Mikhailovski'98):
 - damping is expected to be strong due to phase velocity of acoustic component close to thermal ion velocity.
 - dominant electron plasma is expected to be favorable for BAAE existence.

- NOVA shows existence of BAAEs in ICRH JET and NBI NSTX plasmas.
- Qualitatively NOVA predicts BAAE frequency evolution in agreement with observations on both tokamaks.
- In NSTX n = 2 low shear BAAE internal structure, frequency and their evolution are in agreemnt with NOVA.
 - MSE measurements on NSTX seem to validate theory and MHD (q_{min}) spectroscopy via BAAEs.
 - Maybe useful for burning plasmas, ITER.
- For pure electron plasma (lowest f) gap (sound wave effect) BAAE frequency is above the measured value in JET by factor ~ 1.77 (if $T_i \ll T_e$).
- Need to reconcile theory and experiment via kinetic theory and/or:
 - may imply local reversed shear with $q_{min} = 1.5$ but strong indications exist for $q_0 = 1$,
 - possible redistribution of the current drive due to:
 - * MHD activity H-minority transport,
 - * ICRH current drive,
 - * runaway electrons in low density JET plasma.
- BAAEs are expected in plasmas with T_e > T_i and strong drive from fast ions and/or η_i (ITG-like drive)