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What is the importance of low- f instabilities?

• New class of instabilities called here Beta-induced Alfvén Acoustic
Eigenmode (BAAE) helps to study two fundamental MHD waves:
Alfvén and acoustic.

• Energetic particle driven low- f MHD instabilities mostly result in radial
particle transport:
– On NSTX, bursting low- f modes can lead to a significant loss of

injected beam ions (Fredrickson’06).
• MHD spectroscopy application for q-profile diagnostic:

– BAAE can complement MHD spectroscopy in low-, medium-β
plasma

– BAAE maybe the only MHD spectroscopy tool in high-β plasma,
such as in STs when RSAEs are suppressed.

• Due to coupling to acoustic branch strong interaction with thermal
ions is expected:
– ⇒ strong drive due to fast ions and strong damping due to thermal

ions,
– ⇒ potential for energy channeling from beam ions directly to

thermal ions (α-channeling, Fisch’93, hot-ion mode, LiWall).
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Theory of Alfvén/acoustic continuum

Simplified shear Alfvén and acoustic coupled equations capture main effects
in low-β, large aspect ratio plasma, low ω∗, (Cheng, Chance ’86):

Ω2y+∂2
‖y +γβsinθz = 0 (Al f venic) (1)

Ω2
(

1+
γβ
2

)

z+
γβ
2

∂2
‖z +2Ω2sinθy = 0 (acoustic) , (2)

where Ω ≡ ωR0/vA, y≡ ξsε/q, ξs ≡~ξ · [B×∇ψ]

|∇ψ|2
and z≡ ∇ ·~ξ , k̂‖ ≡ i∂‖.

Coupling is due to geodesic curvature: m Alfvénic and m±1 acoustic harmonics.

Various solutions follows (Winsor’68, Goedbloed’75, Mikhailovski’75,’98,
Chu’92, Turnbull ’92, Zonca’96, van der Holst’00, Breizman’05, Berk’06):

• Pure acoustic modes (AMs) Ω2 = 1
2γβk2

‖.

• Pure Alfvénic branch Ω2 = k2
‖ + γβ

(

1+1/2q2
)

.

• GAMs: Ω2 = γβ
(

1+1/2q2
)

in the assumption of Ω2 ≥ γβ.

• Modified shear Alfvén branch Ω2 = k2
0/

(

1+2q2
)

exists for Ω2 ≪ γβ.
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Alfvén/acoustic coupling in toroidal equilibrium (schematic)

• Alfvén (A) continuum at low frequency: Ω2 = k2
0,±1

• Acoustic (a) branch Ω2 = γβk2
0,±1/2(1+δ)
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Alfvén/acoustic coupling in toroidal equilibrium (schematic)

• Alfvén (A) continuum at low frequency: Ω2 = k2
0,±1 /

(

1+2q2
)

(modified)

• Acoustic (a) branch Ω2 = γβk2
0,±1/2(1+δ) is coupled via m±1 sidebands

with modified Alfvén continuum (m harmonic) due to geodesic curvature and
pressure.
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NSTX experiments with MSE address theory/experiment frequency
mismatch observed on JET

• Low density ne ≃ 3 × 1019m−3,
PNBI = 2MW, ENBI = 90keV shot
#123816.

• 12 channel MSE measures q profile
(reversed shear).

• Need to test the theory.

• Low frequency oscillations (BAAEs)
are seen unstable:

– upshift frequency evolution from
zero (plasma frame).

– BAAEs reside in wider BAE gap
f ∼

√

βpl .

• High-k component of BAAE at r/a=
0.7 ⇒ conversion to KAW (H.Park,
EPS07,P2.045).
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TAE/RSAEs are suppressed (E. Fredrickson, EPS07) and BAAEs are excited by beams
in high-β NSTX plasmas (typically βpl >∼ 15%).
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Numerically global BAAE modes are found at qmin surface in NSTX
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MSE measured inversed q-profile is used in NOVA modeling.

• At high-β0 = 34%, BAE is wide, up to TAE frequency.

• Two Alfvén/acoustic (A/a) continuum branches are found with Ω2 < γβ, n = 2

• Low shear BAAE frequency

– does not depend on β for q close to rational

– continuously transporms to gap mode (due to higher β, strong coupling)

– fBAAE is close to modified Alfvén branch fA = vAk‖/
√

1+2q2
min|r=0.
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NOVA: BAAE broadens radially as qmin decreases
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• BAAE frequency sweeps
as q-profile relaxes.

• One dominant harmonic
m= nqmin = 3.

• BAAEs interact with the
continuum.
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Ultra SXR measures the same radial structure broadening

Raw USXR signal (∼BAAE structure) Radial profile evolution
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BAAE broadens as qmin decreases
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Reflectometer confirms localized BAAE structure
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• Three plasmas, 3 points each:

• ne = 3.3×1019m−3

O ne = 3.6×1019m−3

∆ ne = 3.8×1019m−3

• Vertical axis refers to points
• - #123816.

• Measurements are taken at sig-
nal maximum.

• Internal fluctuations level
δn/n∼ 2×10−3.
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In high-β plasma BAAEs may be the only MHD spectroscopy
tool for determining q-profile
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βpl0 = 18%⇓ βpl0 = 34%⇓ • RSAE/TAEs can be used to infer qmin
in low-, medium-β plasma

• Zero BAAE frequency point (plasma
frame) indicates rational qmin.

• BAAE activity is terminated at t =
0.275s.
Potential interplay of beam driven instabili-
ties with internal m= 3/n = 2 kink-like in-
stability - similar to TAE/sawtooth nonlinear
interplay (Bernabei’01, Sharapov’06).

• RSAE/TAE and BAAE inferred qmin val-
ues are in agreement with MSE mea-
surement.
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Discussion and Summary

• Theory and numerical analysis show:
– the existence of geodesic curvature induced gaps in the Alfvén/acoustic continuum

below GAM frequency (van der Holst’00),

– low-n global beta-induced Alfvén/acoustic eigenmodes - BAAE are found,

– BAAEs exist in finite beta plasma within wider BAE gap.

• BAAEs are different from BAEs (Heidbrink-Turnbull-Chu-Huysmans)
interpretation as BAAEs require compressibility effect, i.e. sound
wave coupling:
– frequency can sweep up from almost zero in reversed shear.

– frequency is lower 0 < Ω <
√

γβ/2/qmin vs. Ω =
√

γβ
(

1+1/2q2
min

)

for

BAE/GAM.
– both low shear and gap BAAEs can coexist (similar to RSAE/TAEs)

• Kinetic modification of MHD theory is required for new global modes
(Zonca’96, Mikhailovski’98):
– damping is expected to be strong due to phase velocity of acoustic component

close to thermal ion velocity.

– dominant electron plasma is expected to be favorable for BAAE existence.
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Summary (continued)

• NOVA shows existence of BAAEs in ICRH JET and NBI NSTX plasmas.

• Qualitatively NOVA predicts BAAE frequency evolution in agreement with
observations on both tokamaks.

• In NSTX n = 2 low shear BAAE internal structure, frequency and their
evolution are in agreemnt with NOVA.
– MSE measurements on NSTX seem to validate theory and MHD (qmin)

spectroscopy via BAAEs.
– Maybe useful for burning plasmas, ITER.

• For pure electron plasma (lowest f ) gap (sound wave effect) BAAE frequency
is above the measured value in JET by factor ∼ 1.77 (if Ti ≪ Te).

• Need to reconcile theory and experiment via kinetic theory and/or:
– may imply local reversed shear with qmin = 1.5 but strong indications exist

for q0 = 1,
– possible redistribution of the current drive due to:
∗ MHD activity H-minority transport,
∗ ICRH current drive,
∗ runaway electrons in low density JET plasma.

• BAAEs are expected in plasmas with Te > Ti and strong drive from fast ions
and/or ηi (ITG-like drive)
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