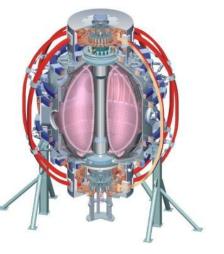


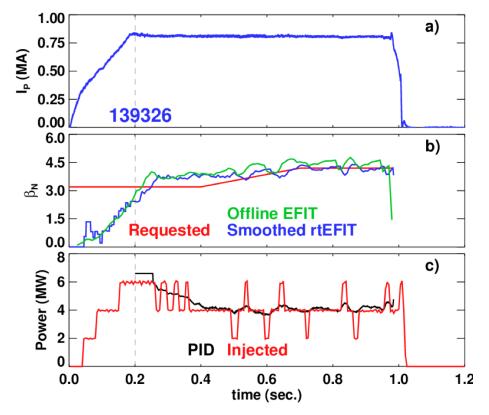
Supported by



Development and Use of the β_N Controller in 2010

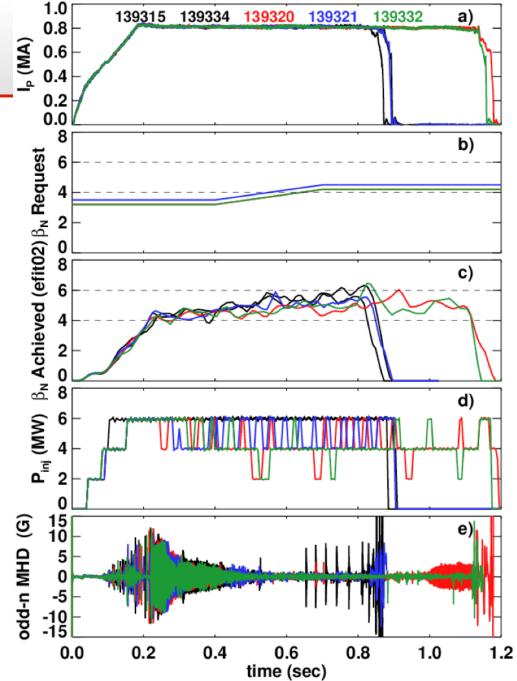
S.P. Gerhardt and the NSTX Research Team

Late 2010 / Early 2011 Results Review

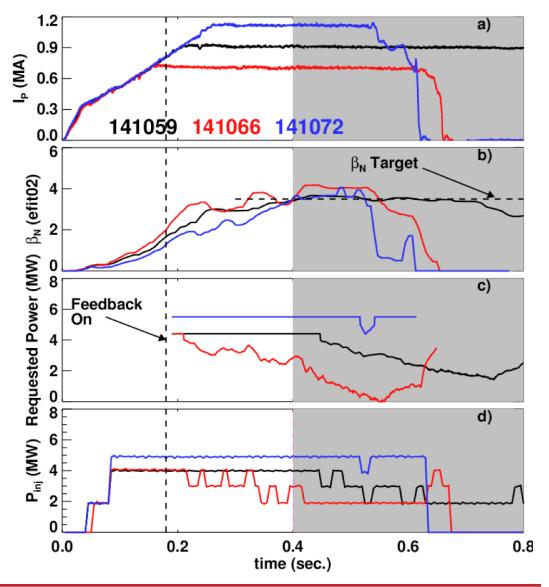

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Overview

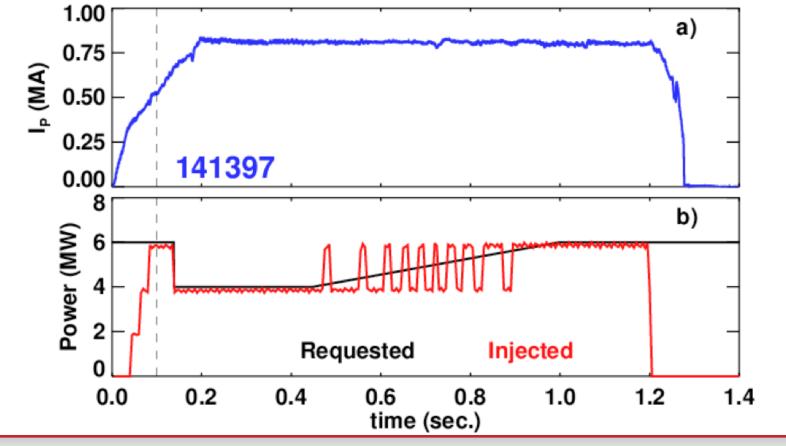
- Ran an XMP at the beginning of the campaign.
 - Thanks to M. Bell and E. Kolemen for a useful algorithm suggestion.
- Ran an XP looking at performance of controller for highperformance discharges.
- Used the controller for other XPs.
 - R. Buttery XP on high- β error field penetration.
 - K. Tritz XP on electron transport.
 - Use (partial) pre-programming capability.
 - S. Sabbagh XP on MHD control in high- β_N plasmas.
 - Canik/Maingi/Gerhardt XP on EPH development.
- FS&T paper nearly through review describing the system.


Example Use of the System

- 800 kA, high-κ discharge.
 - 6 MW front-end.
- Two calculations of β_N :
 - EFIT02
 - (causal-RC) Filtered from rtEFIT.
 - Filtering provides some phase lag (undesirable).
- Ramp in β_N request was required to avoid early disruption.
- Controller settles in at about P_{inj} =4MW to achieve requested β_N .


Controller can be used for High-Performance Discharges

- 800 kA, κ=2.6
- Two discharges in black disrupt at ~0.8 sec.
 - RWMs
- Red and green have β_N controller on from ~0.2 sec.
 - Power reduction avoids β_{N} limit.
 - Ramp in request was useful for avoiding disruptions.
- Blue case with higher request disrupts like the black discharges.


Controller Facilitates Field and Current Scans at Constant β_N

- Scan $I_P \& B_T$.
 - Desire to maintain the same β_N for all shots.
 - Apply large n=1 field starting at t=0.4.
- Turn β_N controller on at t=0.2.
 - Essentially the same β_N by t=0.4.
 - Low current case had slightly higher β_N , as we did not allow source A to modulate.
- Saves a lot of XP time.
 - Not necessary to program the power by hand.

Controller Allows Fine-Scale Power Ramps

- Requested a linear ramp in the power.
 - Modulation calculator gave the required ramp.
- Can be used for XPs next year.
 - Note: Present requirement is that all sources be on before PCS takes over.

Summary

- Controller works for general use.
 - Consider it for more XPs next year.
 - But beware, can make the transport analysis a bit more irritating.
- Must make a judicious choice of β_N request.
 - Ramp in request was sometimes required.
 - Could maybe get around this by:
 - Feeding back on amplification of applied n=1 field (for $\beta_N > \beta_{N,no-wall}$)
 - Using realtime estimates of $\beta_{N,no-wall}$.
 - These are long-terms research tasks.
- Potential short term-improvements.
 - Fix integral wind-up (reset integral error if error gets too large).
 - Add a causal median (instead of RC) filter, to filter out bad reconstructions.
 - Any improvements to rtEFIT?
 - In contact with J. Ferron on this issue.