

Startup and Ramp-up Development for NSTX-U (XMP-101, 126, 128)

Devon Battaglia On behalf of the NSTX-U team

NSTX-U FY16 Results Review September 21, 2016

XMP-101: Inductive Startup on NSTX-U

- Startup (first 20ms) from NSTX modified for NSTX-U
 - Breakdown region at larger major radius
 - Conductive wall structures are different
 - About 200 kA total inductive current in structures at breakdown
 - Desire to operate with a range of ohmic precharge
- LRDFIT modeling supported development and interpretation of XMP-101
 - CD-4 achieved within 7 shots using 8 kA ohmic precharge
 - First shot using 20 kA ohmic pre-charge was successful
 - Quantitative comparisons between model and experiment are on-going

Needed less V_{loop} than anticipated from calculations for NSTX-U

- Smaller V_{loop} needed for breakdown compared to model predictions
 - -8 kA OH precharge: V_{loop} ~ 3V (first 2 ms)
 - Model predicted V_{loop} ~ 4V
 - Scales to V_{loop} = 2 V at B_T = 1T
 - Model matches experiment if the 3D error field near inboard midplane reduced ~ 40%
 - Consistent with smaller OH x TF tilting
- Breakdown region has smaller Z, larger R extent compared to NSTX, consistent with model

R (m)

Breakdown calculations led to viable startup scenarios at two OH precharge levels

- Larger V_{loop} needed with larger ohmic precharge
 - Size of field null reduced at larger $\mathbf{I}_{\rm OH}$
 - 25% increase in V_{loop} matches calculations comparing 8 and 20 kA cases
- 8 and 20 kA OH precharge routinely used
 - Both scenarios retained passive R and Z stability, and achieved > 100 kA by 20ms

One outstanding question is an up-down asymmetry at breakdown

- Model does not reproduce updown asymmetry
 - Unbalanced PF3 currents (~ 200A) needed to center plasma
 - Imbalance is larger at larger $\mathbf{I}_{\rm OH}$ precharge
- Possibilities ...

NSTX-U

- Is wall model incorrect?
 - Adding induced currents near PF1A improves model agreement → cooling tube issue?
- Is the magnetization of the floor rebar important?
- Is the motion of the solenoid midplane important?
- Is there an issue with measuring the PF3 current?

Shape and timing of breakdown region matches camera images by adding induced current to PF1A coils

Future activities for XMP-101

- 20 kA precharge scenario needs improvement
 - $-I_{p}$ rise delayed ~ 4ms compared to 8 kA precharge scenario
 - Leads to larger flux consumption
 - Calculations indicate that PF3 ramp should have been faster
- Scale breakdown scenarios to different TF and OH precharge
 - 8kA precharge scenario demonstrated 0.35 0.65 T
 - -20 kA ohmic scenario demonstrated 0.55 0.65 T
 - Develop library of breakdown scenarios and/or fancy breakdown algorithm

NSTX-U sends its love

Balanced PF3 coil currents with a 20kA OH precharge

Transition to ramp-up control algorithms starts at 20ms

- I_{OH} transitions to I_p control (XMP-126)
 Transition strategy, PI gains similar to NSTX
- I_{PF3}, I_{PF5} transition to Gap control algorithm (XMP-126)
- Additional I_{PF3U}, I_{PF3L} voltage request from VPC (XMP-105)

 Vertical position control → See Dan's talk
- Divertor coil current in relational control (XMP-128)
 - $-I_{PF} = AI_{p} + BI_{OH} + C$
 - "B" and "C" terms new for NSTX-U
 - Second term ("B") compensates for changing OH fringe field
- Some or all PF currents transition to ISOFLUX control when $I_p > 350$ kA
 - First two weeks ran with Gap and Relational Control for entire shot (XMP-128)
 - Dan's talk will cover rtEFIT and ISOFLUX details and results
- · LFS gas in flow rate control
 - Typically switched to HFS fueling around 150ms using new 0.25" diameter system
 - New valves provide ~ factor two reduction in the length of the gas injection (~ 0.4 s)

Ramp-up shape algorithms were used to control first DN discharges (XMP – 128)

NSTX-U

FY16 NSTX-U Results Review, Startup, Ramp-up and H-mode Scenarios, D.J. Battaglia, September 21, 2016

On-going and future work on discharge ramp-up (20 ~ 250 ms)

- Measure and correct EF during ramp up
 - Optimum EFC during ramp-up different than flattop
 - See Clayton's talk
- Analysis of MHD and flux consumption vs ... - Ramp rate, EFC, wall-conditioning, shape, etc.
- Control inner gap and X-point position using ISOFLUX control prior to diverting
 - Important for H-mode access, ramp-up dynamics
 - See Dan's talk
 - Getting close to finishing this task during last week of ops

H-mode scenario development on NSTX-U (XMP – 142, 151)

Devon Battaglia On behalf of the NSTX-U team

NSTX-U FY16 Results Review September 21, 2016

H-mode first observed during 2nd week of plasma operations (January)

- First time diverting and using D fueling

 No ISOFLUX, no EFC
- L-H at P_{NBI} > 1.0 MW – Up to 3 MW of NBI available
- L-H transition in flattop – MHD activity soon after
- "ELM-free" H-mode periods ~ 0.3s

NSTX-U

– ${\rm P}_{\rm RAD}$ and $n_{\rm e}$ rise, H-mode ends with H-L back transition

H-mode can access lower I_i, thus vertically stable at larger κ

Flattop I_i strongly impacted by the timing of the L-H transition

NSTX-U

High κ shape established during 5th run week (March)

- ISOFLUX control of outer boundary

 PF1A and PF2 in relational control
- Established $\kappa \sim 2.2$, $I_i \sim 0.8$ shape – First power on inboard divertor plate
- First version of low-beta EFC
- Up to 4MW of NBI heating
- Full-bottle boronization
- Period of MHD quiescence with regular ELMs observed in one shot

NSTX-U

First shot to put power on inner div had ELMs and maintained W_{TOT}

202946: Best H-mode in January period203655 and 203679: Best H-mode in Feb-March period

Took about 5 shots to recover wall conditions after putting power on inner div, which had not been baked as well as the outer divertor

Best H-mode day of the run during 7th run week (April 4)

- Updated version of EFC – Increased stable β_N/I_i from 4.4 to 6 when $q_{min} < 2$
- Up to 5.5 MW of NBI – Maintained ELMs at high n_e
- Operations followed fullbottle boronization
- Same shape as March with power on inner divertor

```
202946 Feb – no EFC
203679 March – EFC v1
202112 April – EFC v2
202118 April – EFC v2
```


H-mode discharges achieved target parameters for H-mode scenario

- 300ms in flattop with ...
 - Regular type-I ELMs
 - H factor at or above 1
 - $-\beta_N$ at or above no-wall limit
 - MHD quiescent
- Matched best NSTX performance at I_p = 0.9 MA

NSTX-U

X-point and inner gap control integrated into H-mode scenario in final 3 run weeks

- ISOFLUX control of div coils enhances repeatability of scenarios and enables faster shape development
 - Gain optimization different than low-к L-mode scenarios
 - Trouble with shot repeatability motivated control development
- H-mode performance from April never recovered
 - Was full-bottle boronization critical to achieving this scenario?
 - Transitioned to 1/4 or 1/5 bottle nightly boronizations after 4/4/16
 - Full-bottle planned for the day following the failure of PF1AU
 - Did the degradation in PF1AU impact the scenario?
 - Coil inductance change started in April and got worse toward June
 - Was the beam energy and mix important?
 - Beams were different every day, mostly going up in voltage

Ongoing analysis: Identify operational limits to guide future scenario development

See Monday Science Talk from June 9, 2016

Ongoing analysis: Examine P_{LH} for NSTX-U

- L-H transitions often occurred at the time of diverting – Not conducive to quantifying L-H power threshold
- Small database of discharges that transition in steady conditions following a step in power
 - Preliminary findings ...
 - Power threshold is closer to the ITPA P_{LH} scaling developed for conventional-A tokamaks than NSTX
 - Similar density scaling as NSTX and other tokamaks $(n_e^{0.7-1})$
 - Lowest P_{LH} near balanced DN like NSTX and MAST
 - No strong I_p dependence, lower P_{LH} with reduced V_{loop}
 - $-P_{LH}$ does not scale with divertor OII/D_v ratio
 - We were using this metric to justify mini-boronizations

Summary of H-mode scenario development

- Steady progress in H-mode scenario development during ten weeks of operations
 - Achieved target conditions (H \ge 1, $\beta_N/\beta_{no-wall} \ge$ 1) and matched best NSTX performance at I_p = 0.9 MA in first six weeks
 - Did not push κ at $I_i < 0.8 \dots$ room to grow
 - Final three run weeks integrated advanced control tools into scenario, but struggled to recover best performance
 - Better bake of inboard divertor, new PF1A coils will help next run
- Progress was driven by improvements in error field correction, plasma control and NBI heating
 - Also, incredible dependability of magnetics, EFIT, MPTS, cameras and filterscopes from day 1
 - And CHERS system when we actually gave Ron the beams he wanted

Backup

"Startup" is the first 20ms of discharge, producing I_p ~ 150 kA

- Solenoid pre-charged – Produces fringe field in vessel
- PF3U and PF3L used to null solenoid fringe field at t = 0
- Vessel pressure ~ 2 x 10⁻⁵ Torr
- I_{OH} and I_{PF3} ramp to provide V_{loop}
 Drives breakdown and I_p
 Induces ~200 kA toroidal eddy currents
- PF3 and PF5 provide equilibrium ${\rm B_Z}$ following breakdown

- Need passive radial and vertical stability

LRDFIT calculations provide guidance on I_{OH} , I_{PF3} , I_{PF5} current waveforms in first 20ms

- I_{OH} and I_{PF3} ramp to provide V_{loop} and field null at t = 0
- I_{PF3} and I_{PF5} provide R and Z position and stability

Putting power on new divertor surfaces requires some "clean up" time

