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Introduction to Model Predictive Control (MPC)

@ A dynamic model of the system is used to predict the system output for

a future time horizon.

@ Control sequence is calculated to optimize an objective function.
© Receding strategy: Only first element of the control sequence is

applied at each step!
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Magnetic Diffusion Equation

@ The evolution of the poloidal magnetic flux, v is given by the Magnetic
Diffusion Equation:
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Control — Oriented Current Profile Evolution Model
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Reduction of Control-Oriented FPD Model

- 'FPD Model @ MDE combined with the simplified models of n,, T,
%—f =f (1/;7 g—"g, gﬁqﬁ’,ﬁ, z) n, and j,; can be written as an infinite-dimensional
PDE, where ¢ (p, 1) is the poloidal magnetic flux, and

. + - u is the nonlinear iputs, i.e., u = p(u).
0(r) = 5(0(r),u(r)) @ FPD model is discretized in space to generate a set
1 of nonlinear ODEs, where 0(t) = [60,(1),...,0,(1)]T,
with 0(p, 1) = 0v/dp is the poloidal flux gradient.
o
1
o
1
He) = A0 +BU(t) @ Since 1(p,1) = —0(p, 1)/By.0plp, the LTI model for §
i can be converted into an LTI model for z, where

) L A=T7'AT, B=T"'B, and T = —diag(Bop3p;)-
i(k+1)=Aq "N(kHBd (k) @ Finally, the i model is converted to discrete-time,
)f(k) = Cailk) and an output equation is added to select the

“Discrete LTI Model” reference-tracking states.
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MPC Formulation with Integral Action

@ Rewrite the discrete, LTI model of the «-profile in terms of the state
increment, Ai(k + 1) and output increment, Ay(k + 1) so that input is
the control increment, Au(k).

T(k+1)—i(k)

—_— _

Nk + 1) = AgAT(K) + BaAi(k) )
Ay(k + 1) = CaAAT(k) + CaBy Aiilk) (3)
N— N~

YD) —y(K) (k) — a(k—1)

e Defining an enlarged state variable as x(k) = [Ai(k) y(k)]" , equations (2)
and (3) are combined together to form

Ai(k+1)] [ As Ouxm]| [Al(K) By _
[ yk+1) } B [CdAd Ime} [ y(k) * C4By A(k) @
—_— =
(k1) A x(k) B
@ The enlarged plant can then be written as
x(k+ 1) = Ax(k) + BAu(k), (5)
y(k) = Cx(k), (6)

where, C = [Opxn  Luxcm)-
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Integral MPC Solution

o Future feedback control increments (A ) are obtained by
minimizing the quadratic performance index while satisfying the input
constraints, i.e.,

Al =arg puin {Aﬁ[‘NHAﬁk‘N+2x7(k)f'7Aﬁk|N} )

subject to AAiyy < by (8)

@ (7)-(8) define a standard Quadratic Programming (QP) problem.

@ A receding horizon strategy is used and only the first control increment
Au* (k) in the calculated Aiz, is used for control.

@ Optimal feedback control action becomes

(k) = Ait* (k) + ik — 1). 9)
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Closed-Loop Integral MPC Simulation Study in MATLAB

@ The target state trajectory ¢,(p, 1) is generated through an open-loop
TRANSP simulation with the following constant reference inputs.

n.(m=3) [ 5.0 x 10 P4(W) [ 0.8 x 10°
P;(W) [ 0.2x10° Ps(W) | 1.0 x 10°
P,(W) | 0.4 x10° Ps(W) | 1.2 x 10°
P3(W) | 0.6 x 10° I,(A) [ 0.7 x 10°

@ The prediction horizon is set to N = 5 to guarantee closed-loop stability.
@ The initial condition perturbation rejection capability is tested by setting
L(to) = t,(tp) + 00 (10)

@ The controller is also tested against constant input disturbances starting
fromr=25s.i.e,

_o Awr(k) +alk — 1), 1<25s.
”(k)_{ Au*(k) +a(k — 1) +ug, t>2.5s. (1)

where u, = 0.15u, stands for the constant disturbance inputs.
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Results of the Closed-Loop Integral MPC Simulation Study
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Upper Figures: (left)Time evolution of the optimal plasma current, (center) time evolution of the optimal n,
regulation, and (right) time evolution of the optimal neutral beam injection powers.

Lower Figures: Time evolution of the optimal outputs (solid) with their respective targets (dashed).
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Conclusion and Future Work

@ An NSTX-U-tailored plasma response model is obtained by combining
the MDE with simplified models for various plasma variables.

@ A constrained MPC algorithm is formulated based on the reduced-order,
LTI model to regulate the rotational transform (:-profile).

@ An integrator is added to the MPC formulation to achieve offset-free
tracking against modeling uncertainties and external disturbances.

@ The proposed MPC control scheme is tested via closed-loop numerical
simulations based on the control-oriented MDE solver.

@ First MPC design for NSTX-U for current density profile control.
o explicitly handles input and state constraints
@ predicts plasma future state in real time based on current plasma state
@ may be crutial in achieving current profile control + MHD instability avoidance

@ Future work includes:
o Refinement of the FPD control-oriented model using actual experimental
data once NSTX-U achieves relevant plasma scenarios.
o Implementation of MPC algorithm in TRANSP’s Expert routine and PCS.
o TRANSP closed-loop simulations = Experimental testing in NSTX-U.
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