

Feasibility study of O-mode ECRH in NSTX-U startup plasma

Nick Lopez¹

Francesca Poli², Gary Taylor²

¹ Princeton University, ² PPPL NSTX-U Results Review, September 21, 2016

Motivation

- 28 GHz ECRH system planned for installation on NSTX-U in 2018 [G. Taylor et al EPJ Web of Conferences 87 02013 (2015)]
 - Simulations show HHFW coupling is improved via the preheating of electrons with ECRH
 [F.M. Poli *et al* Nucl. Fusion **55** 123011 (2015)]
- Previous ECRH optimization efforts utilized static plasma profiles and equilibrium
 - Unclear if the proposed injection angle will remain optimal throughout entire ECRH phase.
- Time-dependent simulations with TRANSP allow more complete optimization studies
 - Self-consistently evolve plasma parameters in response to injected EC power

Baseline angle $(1^{\circ}, -5^{\circ})$ provides effective ECRH on fast
density rampup, suboptimal on slow density rampupFast Density $\langle P_{Abs} \rangle$ Slow Density $\langle P_{Abs} \rangle$

Nick Lopez | ECRH in NSTX-U | NSTX-U Results Review, September 21, 2016 | 3

NSTX-U

Nick Lopez | ECRH in NSTX-U | NSTX-U Results Review, September 21, 2016 | 4

Time-dependent performance of $(3^\circ, -1^\circ)$ (red) superior to that of $(1^\circ, -5^\circ)$ (black)

T_e(0) exceeding 1.6 keV, 2.4 keV and ECCD up to 59 kA, 81 kA attainable for fast, slow density rampups respectively

NSTX-U

Future Work

- MHD stability analysis of peaked EC current profiles against ballooning modes
- Using GENRAY+CQL3D for quasilinear effects at low density
- Assess EBW startup feasibility

Backup Slides

Nick Lopez | ECRH in NSTX-U | NSTX-U Results Review, September 21, 2016 | 7

Slow & fast density rampups

- Slow density rampup gets 'broadly' overdense at \sim 125 ms
- Fast density rampup gets 'narrowly' overdense at \sim 53 ms, broadens out at \sim 60 ms

ECRH late-time poloidal dependence highly sensitive to *n_e* profile shape at critical density

Figure of Merit - Results

$$\mathsf{FOM} = \frac{1}{6} \left(\langle \tilde{I}_{\mathsf{EC}}^{\mathsf{F}} \rangle + \langle \tilde{I}_{\mathsf{EC}}^{\mathsf{S}} \rangle + \langle \tilde{P}_{\mathsf{Abs}}^{\mathsf{F}} \rangle + \langle \tilde{P}_{\mathsf{Abs}}^{\mathsf{S}} \rangle + \frac{1}{2} \log(\hat{\Delta}_{40}^{\mathsf{F}}) + \frac{1}{2} \log(\hat{\Delta}_{40}^{\mathsf{F}}) \right)$$

Top 5 angles:

1.	$(3^\circ, 0^\circ)$	—	0.689 [†]
2.	$(3^\circ, -1^\circ)$	—	0.636
3.	$(4^\circ, 0^\circ)$	—	0.622
4.	$(4^\circ, -1^\circ)$	—	0.589
5.	$(3^\circ, -2^\circ)$	—	0.582

[†] Extra EC smoothing necessary in equilibrium calculations

Lateral motion during slow density rampup

- At 40 ms, magnetic axis starts moving from $R \approx 0.92$ m to minimum location $R \approx 0.82$ m
- After 80 ms, magnetic axis begins outward transit, approaching R = 1.02 m

Lateral motion coincides with observed dips in I_{EC} and $T_e(0)$ traces

Dynamic Injection Angle

Angle trajectory: $p(t) = 2 \cdot \text{rect} \left(\frac{t-47.5\text{ms}}{15\text{ms}}\right) \cdot \left[\frac{t-40\text{ms}}{5\text{ms}}\right] + 1 + 6 \cdot \Theta(t-55\text{ms})$

- Dynamically increasing poloidal injection angle reduces reflection-dominated deterioration on fast rampup
 - 20.20% increase in $\langle P_{Abs} \rangle$
 - 6.29% decrease in $\langle I_{\rm EC} \rangle$
- Dynamic injection angles don't offer significant improvements to slow density rampup scenario

 $(3^\circ, -p(t)^\circ)$ (red) compared to $(3^\circ, -1^\circ)$ (black)

EBW Startup - Work in Progress

Nick Lopez | ECRH in NSTX-U | NSTX-U Results Review, September 21, 2016 | 12