Visible imaging of divertor turbulence in NSTX and NSTX-U L-mode discharges

NSTX-U Results Review 2016 September 20, 2016

F. Scotti, S. Zweben, R. Maqueda (X-Science), V. Soukhanovskii

Lawrence Livermore National Laboratory

Office of

Science

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences.. Lawrence Livermore National Security, LLC

Divertor intermittent filaments routinely observed in NSTX L-mode and H-mode discharges

- Understanding divertor turbulence is important to assess its role in setting divertor heat and particle flux magnitude and width
- Divertor intermittent filaments have been studied in NSTX L-mode (Scotti APS 2016) and H-mode discharges (Maqueda NF 2010)
- Most easily studied via neutral lithium imaging of filament footprint
 - Brightest line in NSTX (with Li), atomic physics provides surface localization
 - Brightness fluctuations can be understood as being ~ $\tilde{n}_{\rm e}$

Author, Title

SIX-U

- Tangential $D\alpha$ imaging can complement with poloidal filament structure

In diverted L-modes from NSTX, fluctuations up to 30-50%, time

delayed cross correlation consistent with upstream radial motion

- Diverted NSTX Ohmic L-mode discharges from 2010: Li I @ 100kHz, 8µs exposure
 - Fluctuations up to 30-50%, autocorrelation ~50-100µs, statistical moments follow expectations for Gamma distribution
 - Cross correlation of single pixel with rest of image shows helical correlation regions
 - Spiral motion consistent with upstream radial and poloidal motion, toroidal number ~10

Filament footprint in Li I emission correlates with probe J_{sat} at target and GPI upstream

- Cross correlation with probe ion saturation current at same (r,ϕ) up to 0.7-0.8, peaked at zero delay
- Cross correlation with GPI up to 0.7-0.8 in far SOL in region magnetically connected to GPI field of view
 - Peaked at zero delay, as also observed in [Magueda NF 2010]
 - No features observed at ion transit time scales
 - Progressive decrease of correlation towards LCFS

Author, Title

Throughput-optimized camera and high-X-point L-modes enabled <u>near-separatrix</u> turbulence imaging in NSTX-U

- Divertor turbulence imaging through different species/charge states provides information at different spatial locations
- Throughput-optimized setup enabled turbulence imaging via C III (up to 140kHz)
 - Filaments along divertor legs (vs. filament footprint on floor via Li I or $D\alpha$)

Intermittent field-aligned filaments observed in inner and outer divertor legs

- NBI-heated downward biased L-mode discharges
- Intermittent filaments observed on both inner and outer divertor legs (as recently observed in MAST and C-Mod)
- FFT amplitude shows broadband fluctuations
- δl/l ~10-20%
- PDF of inner and outer leg filaments show similar characteristics Interval

High-pass filter 1kHz

No correlation observed between inner and outer leg filaments

- Zero-delay cross correlation of single pixel with rest of image performed for both inner and outer leg filaments over 10ms
- Filaments are field aligned, radial localization around the leg
 - Impossible to determine whether inside, at or outside separatrix
- Correlation > toroidal turn on inner leg, <toroidal turn in outer leg
 - Can be affected by lower signal to noise due to C III shell localization
- Inner and outer leg filaments are uncorrelated (despite being magnetically connected)

0.0 0.5 1.0 1.5 R (m)

Time delayed cross correlation shows opposite toroidal rotation for inner/outer leg filaments

- Time-delayed cross correlation of single pixel with rest of image to show average filament propagation
- Apparent poloidal motion for both inner and outer leg filaments towards X-point
 - Or equivalently opposite toroidal directions
 - Inconsistent with flux tube rigid rotation (also in C-Mod, J. Terry JNME 2016)

Author, Title

Poloidal velocity ~1km/s

Delay (ms)

-0.02

-0.04

0.04

0.02

Summary and future work

- Data to analyze from the 2010 divertor high speed database + high quality GPI
- Expand work on near-separatrix filaments:
 - Correlation with GPI not observed so far
 - Filaments characterization for
 - Different collisionality regimes, magnetic geometry
 - During detachment (inner SOL filaments observed)
 - Apply existing models (e.g., stochastic model) or codes (XGC, BOUT++)
- Would have been useful to have Langmuir probes and IR camera data during FY16 campaign to understand impact on divertor particle and heat fluxes
- Analyze impact of MHD modes on divertor profiles and turbulence
 FFT of camera

NSTX-Upgrade

Along inner leg, outer leg, inboard SOL

Apparent motion: upward along legs

Size ~1 cm

>One transit in inner leg, < one transit in outer leg

Life time ~10s microseconds

Fluctuation level ~10-20 %

Speed ~1km/s

Update on new ENDD status

- ENDD has a new setup in NSTX-U
 - Relocated from Bay I to Bay G to accommodate JHU diagnostics
 - Looking toroidally in front of NBI dump tiles
 - Re-entrant viewport with imaging bundle and in-vessel mirror
 - Dα instead of Dβ
- Main concerns with new view is toroidal asymmetry in neutral density due to proximity of beam dump
- ENDD operational for most of the year
 - In-vessel mirror alignment finalized in March
- Absolute calibration of GPI (180° from ENDD) to check toroidal variation in neutral density, validate ENDD view

