

First Results from Three EUV Spectrometers for Impurity Monitoring

M.E. Weller, P. Beiersdorfer, V.A. Soukhanovskii, E.W. Magee, F. Scotti, *LLNL* PPPL Staff

NSTX-U Results Review September 21-22, 2016

Lawrence Livermore National Laboratory

Summary of Data Collected

- First data collected on May 9th, starting from NSTX-U shot 204563
- Operated during a total of approximately 240 plasma shots over 12 run days
- Total wavelength coverage approximately 8 440 Å
 - X-ray and Extreme Ultraviolet Spectrometer (XEUS): 8 70 Å, 0.1 Å FWHM
 - Metal Monitor and Lithium Spectrometer Assembly (MonaLisa): 50 220 Å, 0.3 Å FWHM (not fully focused yet)
 - Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS): 190 440 Å, 0.3 Å FWHM
- Temporal Resolution
 - Full Frame (for calibration, good signal to noise): 70 ms
 - Full Bin (for fast readout times, problems with x-ray and neutron noise): 3 5 ms
 - Region of Interest (medium readout time, medium signal to noise): 8 13 ms
- Confirmed Elements measured on EUV Spectrometers:
 - He, Li, B, C, O, Cr, Fe, and Ni
- Published first data in RSI (M.E. Weller et al., RSI 87, 11E324, 2016)

Spectrometer Locations

Example of Experimental Results for XEUS

NSTX-U 205079, 170 ms

C, O, B, and Fe lines identified for first results from XEUS. L-shell Fe lines radiate from various stainless steel components.

NSTX-U

Lines	Iransition	Λ (A)
Ο VIII Ly-α	$2p \ ^2P_{1/2,3/2} \rightarrow 1s \ ^2S_{1/2}$	18.97
Ο VII ω	$1s2p \ ^{1}P_{1} \rightarrow 1s^{2} \ ^{1}S_{0}$	21.60
O VII y	$1s2p \ {}^{3}P_{1} \rightarrow 1s^{2} \ {}^{1}S_{0}$	21.80
C VI Ly-β	$3p \ ^2P_{1/2,3/2} \rightarrow 1s \ ^2S_{1/2}$	28.46
C VI Ly-α	$2p \ ^2P_{1/2,3/2} \rightarrow 1s \ ^2S_{1/2}$	33.73
C V ω	$1s2p \ ^{1}P_{1} \rightarrow 1s^{2} \ ^{1}S_{0}$	40.26
CVγ	$1s2p \ ^{3}P_{1} \rightarrow 1s^{2} \ ^{1}S_{0}$	40.72
ΒV Ly-α	$2p \ ^2P_{1/2,3/2} \to 1s \ ^2S_{1/2}$	48.58
Fe XVII 3C	$2p^53d\ ^1P_1 \rightarrow 2p^6\ ^1S_0$	15.02
Fe XVII 3D	$2p^53d~^3D_1 \rightarrow 2p^6~^1S_0$	15.28
Fe XVII 3F	$2p^53s\ ^1P_1 \rightarrow 2p^6\ ^1S_0$	16.81
Fe XVII 3G	$2p^{5}3s \ ^{3}P_{1} \rightarrow 2p^{6} \ ^{1}S_{0}$	17.08

Line Ratios of Ly-α Lines

Example of Experimental Results on MonaLisa

NSTX-U 205079, 30 ms

NSTX-U

During early time on NSTX-U, the spectrum is dominated by M-shell lines of Fe and Ni, which come from stainless steel.

Lines	Transition	λ (Å)	
Fe VIII	$3p^53d^2\ ^2D_{5/2}\rightarrow 3d\ ^2D_{5/2}$	168.2	
Fe IX	$3p^53d\ ^1P_1 \rightarrow 3p^6\ ^1S_0$	171.1	
Fe X	$3p^43d \ ^2D_{5/2} \rightarrow 3p^5 \ ^2P_{3/2}$	174.5	
Fe X	$3p^43d \ ^2P_{3/2} \rightarrow 3p^5 \ ^2P_{3/2}$	177.2	
Fe X	$3p^43d \ ^2P_{1/2} \rightarrow 3p^5 \ ^2P_{1/2}$	180.4	
Fe X	$3p^43d\ ^2S_{1/2} \to 3p^5\ ^2P_{3/2}$	184.5	
Fe XI	$3p^33d\ ^3D_3\rightarrow 3p^4\ ^3P_2$	180.4	
Fe XI	$3p^33d \ ^3P_2 \rightarrow 3p^4 \ ^3P_2$	188.2	
Fe XII	$3p^23d \ ^2D_{3/2} \rightarrow 3p^3 \ ^2P_{1/2}$	188.2	
Fe XII	$3p^23d \ ^4P_{5/2} \rightarrow 3p^3 \ ^4S_{3/2}$	195.1	
Fe XIII	3p3d $^{1}\text{F}_{3} \rightarrow 3p^{2} \ ^{1}\text{D}_{2}$	196.5	
Ni XI	$3p^{5}3d \ ^{1}P_{1} \rightarrow 3p^{6} \ ^{1}S_{0}$	148.4	

Example of Experimental Results on MonaLisa

NSTX-U 205079, 730 ms

After a few hundred ms, usually after NBI's are turned on, the spectrum is dominated by Li, B, C, and O lines.

NSTX-U

7

Example of Experimental Results on LoWEUS

NSTX-U 205079, 30 ms

NSTX-U

During early time on NSTX-U, the spectrum is dominated by M-shell lines of Fe, Ni, and Cr which come from stainless steel.

Lines	Transition	λ (Å)
Fe XIII	$3p3d \ ^{3}D_{3} \rightarrow 3p^{2} \ ^{3}P_{2}$	203.8
Fe XIV	3d $^2D_{5/2} \rightarrow 3p \ ^3P_{3/2}$	219.1
Fe XV	$3s3p \ ^1P_1 \rightarrow 3s^2 \ ^1S_0$	284.2
Fe XVI	$3p \ ^2P_{3/2} \rightarrow 3s \ ^2S_{1/2}$	335.4
Fe XVI	$3p \ ^2P_{1/2} \rightarrow 3s \ ^2S_{1/2}$	360.8
Ni XVII	$3s3p \ ^1P_1 \rightarrow 3s^2 \ ^1S_0$	249.2
Ni XVIII	$3p \ ^2P_{3/2} \rightarrow 3s \ ^2S_{1/2}$	292.0
Ni XVIII	$3p \ ^2P_{1/2} \rightarrow 3s \ ^2S_{1/2}$	320.6
Cr XIII	$3s3p \ ^1P_1 \rightarrow 3s^2 \ ^1S_0$	328.3
Cr XIV	$3p \ ^2P_{3/2} \rightarrow 3s \ ^2S_{1/2}$	389.9
Cr XIV	$3p \ ^2P_{1/2} \rightarrow 3s \ ^2S_{1/2}$	412.1

Example of Experimental Results on LoWEUS

NSTX-U 205079, 730 ms

After a few hundred ms, usually after NBI's are turned on, the spectrum is dominated by He, C, and O lines.

NSTX-U

Lines	Transition	λ (Å)
He II Ly-β	$3p \ ^2P_{1/2,3/2} \rightarrow 1s \ ^2S_{1/2}$	256.3
He II Ly-α	$2p \ ^2P_{1/2,3/2} \rightarrow 1s \ ^2S_{1/2}$	303.8
C IV	$5p \ ^2P_{3/2} \rightarrow 2s \ ^2S_{1/2}$	222.8
C IV	$4p \ ^2P_{3/2} \rightarrow 2s \ ^2S_{1/2}$	244.9
C IV	4d $^2D_{5/2} \rightarrow 2p \ ^2P_{3/2}$	289.2
C IV	$3p \ ^2P_{3/2} \rightarrow 2s \ ^2S_{1/2}$	312.4
C IV	$3d\ ^2D_{5/2} \rightarrow 2p\ ^2P_{3/2}$	384.2
C IV	$3s \ ^2S_{1/2} \rightarrow 2p \ ^2P_{3/2}$	419.7
CV	$3p \ ^{3}P_{2} \rightarrow 2s \ ^{3}S_{1}$	227.2

· 9

LoWEUS Spectra from NSTX-U 205079 at 0.166 s

Fe Lines Identified

11

Ni Lines Identified

Cr Lines Identified

C Lines Identified

He Lines Identified

O Lines Identified

Potentially Diagnostically Important Lines for LoWEUS

18

Conclusions

- NSTX-U results of EUV spectra covering the spectral range of 8-440 Å have been shown for the first time – Over 240 plasma shots covering 12 run days
- Hundreds of lines identified with confirmed elements:
 He, Li, B, C, O, Cr, Fe, Ni
- In particular data from LoWEUS covered the spectral range > 250 Å, identifying many new lines on NSTX-U to study
- Radiation dominated by M-shell Fe, Ni, and Cr lines and then dominated by C, followed by He, Li, O, and B
- Can possibly use Fe XV (284.2 Å) and Fe XVI (335.4 Å) lines as warning signals