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Transport induced by chirping modes can seriously
degrade	the confinement of energetic particles

GAE/CAE
Fredrickson et	al,	PoP 2006

TAE			Podestà et	al,	NF	2012
Up to 40%	of injected beam is
observed to be lost in	DIII-D	and
NSTX

Chirping behavior is observed to
be a	precursor	to avalanches	in	
NSTX

What is the dominant fast ion
transport mechanism (convective
or diffusive)?	When is quasilinear
theory applicable?	Gorelenkov’s talk

Why chirping is ubiquitous in	
NSTX	but rare in	DIII-D?
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What makes wave chirping likely to happen?
Starting point:	kinetic equation plus wave power balance	close	to marginal	stability

Berk,	Breizman and Pekker,	PRL	1996											Lilley,	Breizman and Sharapov,	PRL	2009
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What makes wave chirping likely to happen?
Starting point:	kinetic equation plus wave power balance	close	to marginal	stability
Cubic equation:	lowest-order nonlinear correction to the evolution of mode amplitude	C

• If nonlinearity is weak:	linear	stability,	solution saturates at a	low level and fmerely
flattens (system	not allowed to further evolve	nonlinearly).

• If C blows up:	system	enters a	strong nonlinear phase with large mode amplitude	and
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A	general	criterion for	Alfvén	wave chirping
(strongly	dependent	on	competition	between	fast	ion	scattering	and	drag)	
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are the mean poloidal and toroidal transit frequencies
of the equilibrium orbit. The phase-space integration is
given by

´
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´
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where m

EP

is the mass of EPs, c is the light speed
and ‡Î accounts for counter- and co-passing particles.
The e�ective collisional operator can be cast in the form
C[f ] = ‹

3
scatt

ˆ

2
f

ˆ�2 + ‹

2
drag

ˆf

ˆ� , where ‹

scatt

and ‹

drag

are
understood to be the e�ective pitch-angle scattering and
drag (slowing down) coe�cients, defined in Eq. 6 of Ref.
[15]. ‹

stoch

is the e�ective stochasticity, which includes
‹

scatt

. In equation (1), the circumflex denotes normal-
ization with respect to “ = “

L

≠ “

d

(growth rate minus
damping rate) and t is the time normalized with the same
quantity. Vlasov simulation codes have shown [19, 20]
that the blow-up solutions of (1) are precursors to chirp-
ing behavior.

The type of nonlinear evolution of a wave destabilized
by a perturbing EP drive is strongly dependent on the
kernel of the integrals of Eq. (1), more specifically on
the ratio between the e�ective stochastic relaxation felt
by the EPs and the e�ective drag rate, as well as the lin-
ear growth rate. In Ref. [15], Eq. (1) was simplified by
using characteristic values for the collisional ‹

scatt

and
‹

drag

and conditions for the existence and stability of so-
lutions of the cubic equation were derived. In Fig. 1, we
test for the first time this prediction against modes mea-
sured in di�erent tokamaks. In order to determine mode
properties, we employ the kinetic-MHD code NOVA [21]
to compute eigenstructures and the frequency continua
and gaps. Its kinetic postprocessor NOVA-K [22, 23]
is used to calculate perturbative contributions that can
stabilize and destabilize MHD eigenmodes. In addition,
NOVA-K is also employed to compute resonant surfaces
in (E , P

Ï

, µ) space. In order to characterize the mode
being observed in the experiment, NSTX reflectometer
measurements are compared to the mode structures com-
puted by NOVA, employing a similar procedure as the
one used in Refs. [6, 24]. In DIII-D, similar identifi-
cation is performed using Electron Cyclotron Emission
(ECE) [25].

We see from Fig. 1 that about half of the chirping
NSTX modes lie in a region where a stable steady mode is
predicted by Ref. [15]. For the DIII-D experimental cases
that produced fixed-frequency modes, the predictions of
Ref. [15] are mostly in agreement although one point is
borderline and another one may be unstable enough to
be in a chirping regime. Hence we see that using the sim-
plified, although elaborate, modeling akin to that used in
[15], might be in satisfactory agreement with DIII-D data
but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for ‹

scatt

(considered the only con-
tribution to ‹

stoch

) and ‹

drag

, although very insightful,
appears insu�cient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not su�cient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, ” (Ê ≠ �

l

(P
Ï

, E , µ)),
allows one of the phase-space integrals to be eliminated.
Upon integration over ·1 and redefinition of the integra-
tion variable z = ‹

drag

· one finds the following criterion
for the non-existence of steady solutions of (1):
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(3)
For the resonances to be linearly destabilizing to pos-

itive energy waves, Int (plotted in Fig. 2) is the only
component of the criterion (2) that can be negative from
the phase-space regions which contribute positively to the
instability growth. N is a normalization factor consist-
ing of the same sum that appears in Eq. (2) except for

>0:	fixed-frequency likely
<0:	chirping likely
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Crt accounts for	collisional coefficients
varying along resonances and particle orbits
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but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for ‹

scatt

(considered the only con-
tribution to ‹

stoch

) and ‹

drag

, although very insightful,
appears insu�cient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not su�cient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, ” (Ê ≠ �
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(P
Ï

, E , µ)),
allows one of the phase-space integrals to be eliminated.
Upon integration over ·1 and redefinition of the integra-
tion variable z = ‹

drag

· one finds the following criterion
for the non-existence of steady solutions of (1):
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For the resonances to be linearly destabilizing to pos-

itive energy waves, Int (plotted in Fig. 2) is the only
component of the criterion (2) that can be negative from
the phase-space regions which contribute positively to the
instability growth. N is a normalization factor consist-
ing of the same sum that appears in Eq. (2) except for
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(growth rate minus
damping rate) and t is the time normalized with the same
quantity. Vlasov simulation codes have shown [19, 20]
that the blow-up solutions of (1) are precursors to chirp-
ing behavior.

The type of nonlinear evolution of a wave destabilized
by a perturbing EP drive is strongly dependent on the
kernel of the integrals of Eq. (1), more specifically on
the ratio between the e�ective stochastic relaxation felt
by the EPs and the e�ective drag rate, as well as the lin-
ear growth rate. In Ref. [15], Eq. (1) was simplified by
using characteristic values for the collisional ‹

scatt

and
‹

drag

and conditions for the existence and stability of so-
lutions of the cubic equation were derived. In Fig. 1, we
test for the first time this prediction against modes mea-
sured in di�erent tokamaks. In order to determine mode
properties, we employ the kinetic-MHD code NOVA [21]
to compute eigenstructures and the frequency continua
and gaps. Its kinetic postprocessor NOVA-K [22, 23]
is used to calculate perturbative contributions that can
stabilize and destabilize MHD eigenmodes. In addition,
NOVA-K is also employed to compute resonant surfaces
in (E , P

Ï

, µ) space. In order to characterize the mode
being observed in the experiment, NSTX reflectometer
measurements are compared to the mode structures com-
puted by NOVA, employing a similar procedure as the
one used in Refs. [6, 24]. In DIII-D, similar identifi-
cation is performed using Electron Cyclotron Emission
(ECE) [25].

We see from Fig. 1 that about half of the chirping
NSTX modes lie in a region where a stable steady mode is
predicted by Ref. [15]. For the DIII-D experimental cases
that produced fixed-frequency modes, the predictions of
Ref. [15] are mostly in agreement although one point is
borderline and another one may be unstable enough to
be in a chirping regime. Hence we see that using the sim-
plified, although elaborate, modeling akin to that used in
[15], might be in satisfactory agreement with DIII-D data
but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for ‹

scatt

(considered the only con-
tribution to ‹

stoch

) and ‹

drag

, although very insightful,
appears insu�cient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not su�cient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, ” (Ê ≠ �
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, E , µ)),
allows one of the phase-space integrals to be eliminated.
Upon integration over ·1 and redefinition of the integra-
tion variable z = ‹
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ing of the same sum that appears in Eq. (2) except for
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by a perturbing EP drive is strongly dependent on the
kernel of the integrals of Eq. (1), more specifically on
the ratio between the e�ective stochastic relaxation felt
by the EPs and the e�ective drag rate, as well as the lin-
ear growth rate. In Ref. [15], Eq. (1) was simplified by
using characteristic values for the collisional ‹
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and conditions for the existence and stability of so-
lutions of the cubic equation were derived. In Fig. 1, we
test for the first time this prediction against modes mea-
sured in di�erent tokamaks. In order to determine mode
properties, we employ the kinetic-MHD code NOVA [21]
to compute eigenstructures and the frequency continua
and gaps. Its kinetic postprocessor NOVA-K [22, 23]
is used to calculate perturbative contributions that can
stabilize and destabilize MHD eigenmodes. In addition,
NOVA-K is also employed to compute resonant surfaces
in (E , P
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, µ) space. In order to characterize the mode
being observed in the experiment, NSTX reflectometer
measurements are compared to the mode structures com-
puted by NOVA, employing a similar procedure as the
one used in Refs. [6, 24]. In DIII-D, similar identifi-
cation is performed using Electron Cyclotron Emission
(ECE) [25].

We see from Fig. 1 that about half of the chirping
NSTX modes lie in a region where a stable steady mode is
predicted by Ref. [15]. For the DIII-D experimental cases
that produced fixed-frequency modes, the predictions of
Ref. [15] are mostly in agreement although one point is
borderline and another one may be unstable enough to
be in a chirping regime. Hence we see that using the sim-
plified, although elaborate, modeling akin to that used in
[15], might be in satisfactory agreement with DIII-D data
but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for ‹

scatt

(considered the only con-
tribution to ‹

stoch

) and ‹

drag

, although very insightful,
appears insu�cient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not su�cient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, ” (Ê ≠ �
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, E , µ)),
allows one of the phase-space integrals to be eliminated.
Upon integration over ·1 and redefinition of the integra-
tion variable z = ‹
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· one finds the following criterion
for the non-existence of steady solutions of (1):
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component of the criterion (2) that can be negative from
the phase-space regions which contribute positively to the
instability growth. N is a normalization factor consist-
ing of the same sum that appears in Eq. (2) except for
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Figure 4. DIII-D shot #152828. The point
(‹scatt = 1, ‹drag = 1) corresponds to the experimental
situation, is now in the positive region.

positive ones represent expected steady-state. The re-
sults were obtained by using the normalization you sug-
gested for the criterion.

Chirping events are therefore enhanced by the coher-
ence introduced by dynamical friction (drag or slowing-
down) and are inhibited by stochasticity arising from dif-
fusive processes, such as pitch-angle scattering, and from
background turbulence. Stochastic events lead to loss
of phase information that contribute to destroy coherent
structures. Since NBI ions heat the plasma via slowing
down while ICRH-accelerated ions transfer their energy
via a di�usive process, it is instructive to predict whether
a given discharge will give rise to chirping structures, in
terms of the collisional operators that act on the resonant
particle distribution.

In summary, we have performed a novel study of the
early phase of chirping events in tokamak plasmas by
means of realistic calculations of collisional coe�cients
using NOVA-K code. Microturbulence was shown to have
a profound e�ect on whether or not chirping events will
start in the experiment. Some factors that may influence
the chirping formation are not captured by the current
theory and deserve further investigation. For example,
static 3D ripple fields have been shown to a�ect bursting
Alfvén modes and reduce chirping [cite Bortolon, 2013].
Other limitation is that the cubic equation assumes small

mode amplitude, which is not necessarily the case in the
experiment.

Limitations of this work:
mode amplitude needs to be small
Ripple, energy di�usion, extrinsic (or intrinsic?) di�u-

sion due to mode overlap contribute to bring it closer to
the boundary

NTM e�ect
Chirping events require particles to keep their phase in-

formation from one bounce to another in order to move
nonlinear structures altogether over phase space without
losing its coherence. The lack of chirping observation in-
dicates that details of the phase trajectory of resonant
particles are not essential to be known since stochastic
dynamics dominates. This suggests that a quasilinear
di�usive regime is likely to model the transport of fast
ions. This work provides useful information on the ap-
plicability criterion for such reduced models and on pre-
dictive capabilities.

Chirping instabilities constitute an interesting exam-
ple in which turbulence is beneficial for the confinement.
Transition from L to H mode, which is normally avoided
for fast ion studies in DIII-D since it conflicts with some
of the diagnostics.

the formation of a density pedestal at the L-H transi-
tion can cause a sharp change in beam deposition, which
then causes an instant change in the velocity phase gra-
dients of the full energy beam ions.

Spherical tokamaks have higher betas and relative ro-
tation shear, as compared to conventional ones.

Our interpretation is consistent with the fact that DIII-
D plasmas that produce chirping have always been H-
modes

Future experiments: high rotation shear and higher
beta.

How far NSTX is from the boundary; Initial low beam
power shots of L-mode NSTX-U showed nonchirping
Alfvénic modes. However they were poorly diagnostized.
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quantity. Vlasov simulation codes have shown [19, 20]
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ing behavior.

The type of nonlinear evolution of a wave destabilized
by a perturbing EP drive is strongly dependent on the
kernel of the integrals of Eq. (1), more specifically on
the ratio between the e�ective stochastic relaxation felt
by the EPs and the e�ective drag rate, as well as the lin-
ear growth rate. In Ref. [15], Eq. (1) was simplified by
using characteristic values for the collisional ‹

scatt

and
‹

drag

and conditions for the existence and stability of so-
lutions of the cubic equation were derived. In Fig. 1, we
test for the first time this prediction against modes mea-
sured in di�erent tokamaks. In order to determine mode
properties, we employ the kinetic-MHD code NOVA [21]
to compute eigenstructures and the frequency continua
and gaps. Its kinetic postprocessor NOVA-K [22, 23]
is used to calculate perturbative contributions that can
stabilize and destabilize MHD eigenmodes. In addition,
NOVA-K is also employed to compute resonant surfaces
in (E , P

Ï

, µ) space. In order to characterize the mode
being observed in the experiment, NSTX reflectometer
measurements are compared to the mode structures com-
puted by NOVA, employing a similar procedure as the
one used in Refs. [6, 24]. In DIII-D, similar identifi-
cation is performed using Electron Cyclotron Emission
(ECE) [25].

We see from Fig. 1 that about half of the chirping
NSTX modes lie in a region where a stable steady mode is
predicted by Ref. [15]. For the DIII-D experimental cases
that produced fixed-frequency modes, the predictions of
Ref. [15] are mostly in agreement although one point is
borderline and another one may be unstable enough to
be in a chirping regime. Hence we see that using the sim-
plified, although elaborate, modeling akin to that used in
[15], might be in satisfactory agreement with DIII-D data
but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for ‹

scatt

(considered the only con-
tribution to ‹

stoch

) and ‹

drag

, although very insightful,
appears insu�cient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not su�cient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, ” (Ê ≠ �
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and conditions for the existence and stability of so-
lutions of the cubic equation were derived. In Fig. 1, we
test for the first time this prediction against modes mea-
sured in di�erent tokamaks. In order to determine mode
properties, we employ the kinetic-MHD code NOVA [21]
to compute eigenstructures and the frequency continua
and gaps. Its kinetic postprocessor NOVA-K [22, 23]
is used to calculate perturbative contributions that can
stabilize and destabilize MHD eigenmodes. In addition,
NOVA-K is also employed to compute resonant surfaces
in (E , P
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, µ) space. In order to characterize the mode
being observed in the experiment, NSTX reflectometer
measurements are compared to the mode structures com-
puted by NOVA, employing a similar procedure as the
one used in Refs. [6, 24]. In DIII-D, similar identifi-
cation is performed using Electron Cyclotron Emission
(ECE) [25].

We see from Fig. 1 that about half of the chirping
NSTX modes lie in a region where a stable steady mode is
predicted by Ref. [15]. For the DIII-D experimental cases
that produced fixed-frequency modes, the predictions of
Ref. [15] are mostly in agreement although one point is
borderline and another one may be unstable enough to
be in a chirping regime. Hence we see that using the sim-
plified, although elaborate, modeling akin to that used in
[15], might be in satisfactory agreement with DIII-D data
but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for ‹

scatt

(considered the only con-
tribution to ‹
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) and ‹
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, although very insightful,
appears insu�cient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not su�cient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, ” (Ê ≠ �
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Upon integration over ·1 and redefinition of the integra-
tion variable z = ‹
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component of the criterion (2) that can be negative from
the phase-space regions which contribute positively to the
instability growth. N is a normalization factor consist-
ing of the same sum that appears in Eq. (2) except for
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Eigenstructure information:

Resonance surfaces:
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nonlinear prediction from linear	physics elements
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Figure 4. DIII-D shot #152828. The point
(‹scatt = 1, ‹drag = 1) corresponds to the experimental
situation, is now in the positive region.

positive ones represent expected steady-state. The re-
sults were obtained by using the normalization you sug-
gested for the criterion.

Chirping events are therefore enhanced by the coher-
ence introduced by dynamical friction (drag or slowing-
down) and are inhibited by stochasticity arising from dif-
fusive processes, such as pitch-angle scattering, and from
background turbulence. Stochastic events lead to loss
of phase information that contribute to destroy coherent
structures. Since NBI ions heat the plasma via slowing
down while ICRH-accelerated ions transfer their energy
via a di�usive process, it is instructive to predict whether
a given discharge will give rise to chirping structures, in
terms of the collisional operators that act on the resonant
particle distribution.

In summary, we have performed a novel study of the
early phase of chirping events in tokamak plasmas by
means of realistic calculations of collisional coe�cients
using NOVA-K code. Microturbulence was shown to have
a profound e�ect on whether or not chirping events will
start in the experiment. Some factors that may influence
the chirping formation are not captured by the current
theory and deserve further investigation. For example,
static 3D ripple fields have been shown to a�ect bursting
Alfvén modes and reduce chirping [cite Bortolon, 2013].
Other limitation is that the cubic equation assumes small

mode amplitude, which is not necessarily the case in the
experiment.

Limitations of this work:
mode amplitude needs to be small
Ripple, energy di�usion, extrinsic (or intrinsic?) di�u-

sion due to mode overlap contribute to bring it closer to
the boundary

NTM e�ect
Chirping events require particles to keep their phase in-

formation from one bounce to another in order to move
nonlinear structures altogether over phase space without
losing its coherence. The lack of chirping observation in-
dicates that details of the phase trajectory of resonant
particles are not essential to be known since stochastic
dynamics dominates. This suggests that a quasilinear
di�usive regime is likely to model the transport of fast
ions. This work provides useful information on the ap-
plicability criterion for such reduced models and on pre-
dictive capabilities.

Chirping instabilities constitute an interesting exam-
ple in which turbulence is beneficial for the confinement.
Transition from L to H mode, which is normally avoided
for fast ion studies in DIII-D since it conflicts with some
of the diagnostics.

the formation of a density pedestal at the L-H transi-
tion can cause a sharp change in beam deposition, which
then causes an instant change in the velocity phase gra-
dients of the full energy beam ions.

Spherical tokamaks have higher betas and relative ro-
tation shear, as compared to conventional ones.

Our interpretation is consistent with the fact that DIII-
D plasmas that produce chirping have always been H-
modes

Future experiments: high rotation shear and higher
beta.

How far NSTX is from the boundary; Initial low beam
power shots of L-mode NSTX-U showed nonchirping
Alfvénic modes. However they were poorly diagnostized.
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Crt accounts for	collisional coefficients
varying along resonances and particle orbits
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are the mean poloidal and toroidal transit frequencies
of the equilibrium orbit. The phase-space integration is
given by
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is the mass of EPs, c is the light speed
and ‡Î accounts for counter- and co-passing particles.
The e�ective collisional operator can be cast in the form
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and ‹
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understood to be the e�ective pitch-angle scattering and
drag (slowing down) coe�cients, defined in Eq. 6 of Ref.
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is the e�ective stochasticity, which includes
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scatt

. In equation (1), the circumflex denotes normal-
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(growth rate minus
damping rate) and t is the time normalized with the same
quantity. Vlasov simulation codes have shown [19, 20]
that the blow-up solutions of (1) are precursors to chirp-
ing behavior.

The type of nonlinear evolution of a wave destabilized
by a perturbing EP drive is strongly dependent on the
kernel of the integrals of Eq. (1), more specifically on
the ratio between the e�ective stochastic relaxation felt
by the EPs and the e�ective drag rate, as well as the lin-
ear growth rate. In Ref. [15], Eq. (1) was simplified by
using characteristic values for the collisional ‹

scatt

and
‹

drag

and conditions for the existence and stability of so-
lutions of the cubic equation were derived. In Fig. 1, we
test for the first time this prediction against modes mea-
sured in di�erent tokamaks. In order to determine mode
properties, we employ the kinetic-MHD code NOVA [21]
to compute eigenstructures and the frequency continua
and gaps. Its kinetic postprocessor NOVA-K [22, 23]
is used to calculate perturbative contributions that can
stabilize and destabilize MHD eigenmodes. In addition,
NOVA-K is also employed to compute resonant surfaces
in (E , P

Ï

, µ) space. In order to characterize the mode
being observed in the experiment, NSTX reflectometer
measurements are compared to the mode structures com-
puted by NOVA, employing a similar procedure as the
one used in Refs. [6, 24]. In DIII-D, similar identifi-
cation is performed using Electron Cyclotron Emission
(ECE) [25].

We see from Fig. 1 that about half of the chirping
NSTX modes lie in a region where a stable steady mode is
predicted by Ref. [15]. For the DIII-D experimental cases
that produced fixed-frequency modes, the predictions of
Ref. [15] are mostly in agreement although one point is
borderline and another one may be unstable enough to
be in a chirping regime. Hence we see that using the sim-
plified, although elaborate, modeling akin to that used in
[15], might be in satisfactory agreement with DIII-D data
but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for ‹

scatt

(considered the only con-
tribution to ‹

stoch

) and ‹

drag

, although very insightful,
appears insu�cient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not su�cient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, ” (Ê ≠ �
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(P
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, E , µ)),
allows one of the phase-space integrals to be eliminated.
Upon integration over ·1 and redefinition of the integra-
tion variable z = ‹

drag

· one finds the following criterion
for the non-existence of steady solutions of (1):
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For the resonances to be linearly destabilizing to pos-

itive energy waves, Int (plotted in Fig. 2) is the only
component of the criterion (2) that can be negative from
the phase-space regions which contribute positively to the
instability growth. N is a normalization factor consist-
ing of the same sum that appears in Eq. (2) except for
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(growth rate minus
damping rate) and t is the time normalized with the same
quantity. Vlasov simulation codes have shown [19, 20]
that the blow-up solutions of (1) are precursors to chirp-
ing behavior.

The type of nonlinear evolution of a wave destabilized
by a perturbing EP drive is strongly dependent on the
kernel of the integrals of Eq. (1), more specifically on
the ratio between the e�ective stochastic relaxation felt
by the EPs and the e�ective drag rate, as well as the lin-
ear growth rate. In Ref. [15], Eq. (1) was simplified by
using characteristic values for the collisional ‹

scatt

and
‹

drag

and conditions for the existence and stability of so-
lutions of the cubic equation were derived. In Fig. 1, we
test for the first time this prediction against modes mea-
sured in di�erent tokamaks. In order to determine mode
properties, we employ the kinetic-MHD code NOVA [21]
to compute eigenstructures and the frequency continua
and gaps. Its kinetic postprocessor NOVA-K [22, 23]
is used to calculate perturbative contributions that can
stabilize and destabilize MHD eigenmodes. In addition,
NOVA-K is also employed to compute resonant surfaces
in (E , P

Ï

, µ) space. In order to characterize the mode
being observed in the experiment, NSTX reflectometer
measurements are compared to the mode structures com-
puted by NOVA, employing a similar procedure as the
one used in Refs. [6, 24]. In DIII-D, similar identifi-
cation is performed using Electron Cyclotron Emission
(ECE) [25].

We see from Fig. 1 that about half of the chirping
NSTX modes lie in a region where a stable steady mode is
predicted by Ref. [15]. For the DIII-D experimental cases
that produced fixed-frequency modes, the predictions of
Ref. [15] are mostly in agreement although one point is
borderline and another one may be unstable enough to
be in a chirping regime. Hence we see that using the sim-
plified, although elaborate, modeling akin to that used in
[15], might be in satisfactory agreement with DIII-D data
but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for ‹

scatt

(considered the only con-
tribution to ‹

stoch

) and ‹

drag

, although very insightful,
appears insu�cient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not su�cient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, ” (Ê ≠ �
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, E , µ)),
allows one of the phase-space integrals to be eliminated.
Upon integration over ·1 and redefinition of the integra-
tion variable z = ‹
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· one finds the following criterion
for the non-existence of steady solutions of (1):
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For the resonances to be linearly destabilizing to pos-

itive energy waves, Int (plotted in Fig. 2) is the only
component of the criterion (2) that can be negative from
the phase-space regions which contribute positively to the
instability growth. N is a normalization factor consist-
ing of the same sum that appears in Eq. (2) except for
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damping rate) and t is the time normalized with the same
quantity. Vlasov simulation codes have shown [19, 20]
that the blow-up solutions of (1) are precursors to chirp-
ing behavior.

The type of nonlinear evolution of a wave destabilized
by a perturbing EP drive is strongly dependent on the
kernel of the integrals of Eq. (1), more specifically on
the ratio between the e�ective stochastic relaxation felt
by the EPs and the e�ective drag rate, as well as the lin-
ear growth rate. In Ref. [15], Eq. (1) was simplified by
using characteristic values for the collisional ‹

scatt

and
‹

drag

and conditions for the existence and stability of so-
lutions of the cubic equation were derived. In Fig. 1, we
test for the first time this prediction against modes mea-
sured in di�erent tokamaks. In order to determine mode
properties, we employ the kinetic-MHD code NOVA [21]
to compute eigenstructures and the frequency continua
and gaps. Its kinetic postprocessor NOVA-K [22, 23]
is used to calculate perturbative contributions that can
stabilize and destabilize MHD eigenmodes. In addition,
NOVA-K is also employed to compute resonant surfaces
in (E , P
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, µ) space. In order to characterize the mode
being observed in the experiment, NSTX reflectometer
measurements are compared to the mode structures com-
puted by NOVA, employing a similar procedure as the
one used in Refs. [6, 24]. In DIII-D, similar identifi-
cation is performed using Electron Cyclotron Emission
(ECE) [25].

We see from Fig. 1 that about half of the chirping
NSTX modes lie in a region where a stable steady mode is
predicted by Ref. [15]. For the DIII-D experimental cases
that produced fixed-frequency modes, the predictions of
Ref. [15] are mostly in agreement although one point is
borderline and another one may be unstable enough to
be in a chirping regime. Hence we see that using the sim-
plified, although elaborate, modeling akin to that used in
[15], might be in satisfactory agreement with DIII-D data
but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for ‹

scatt

(considered the only con-
tribution to ‹

stoch

) and ‹

drag

, although very insightful,
appears insu�cient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not su�cient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, ” (Ê ≠ �
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, E , µ)),
allows one of the phase-space integrals to be eliminated.
Upon integration over ·1 and redefinition of the integra-
tion variable z = ‹
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· one finds the following criterion
for the non-existence of steady solutions of (1):
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itive energy waves, Int (plotted in Fig. 2) is the only
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the phase-space regions which contribute positively to the
instability growth. N is a normalization factor consist-
ing of the same sum that appears in Eq. (2) except for
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From GTC	gyrokinetic simulations for	passing
particles (Zhang,	Lin and Chen,	PRL	2008):
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The type of nonlinear evolution of a wave destabilized
by a perturbing EP drive is strongly dependent on the
kernel of the integrals of Eq. (1), more specifically on
the ratio between the e�ective stochastic relaxation felt
by the EPs and the e�ective drag rate, as well as the lin-
ear growth rate. In Ref. [15], Eq. (1) was simplified by
using characteristic values for the collisional ‹
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and
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and conditions for the existence and stability of so-
lutions of the cubic equation were derived. In Fig. 1, we
test for the first time this prediction against modes mea-
sured in di�erent tokamaks. In order to determine mode
properties, we employ the kinetic-MHD code NOVA [21]
to compute eigenstructures and the frequency continua
and gaps. Its kinetic postprocessor NOVA-K [22, 23]
is used to calculate perturbative contributions that can
stabilize and destabilize MHD eigenmodes. In addition,
NOVA-K is also employed to compute resonant surfaces
in (E , P
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, µ) space. In order to characterize the mode
being observed in the experiment, NSTX reflectometer
measurements are compared to the mode structures com-
puted by NOVA, employing a similar procedure as the
one used in Refs. [6, 24]. In DIII-D, similar identifi-
cation is performed using Electron Cyclotron Emission
(ECE) [25].

We see from Fig. 1 that about half of the chirping
NSTX modes lie in a region where a stable steady mode is
predicted by Ref. [15]. For the DIII-D experimental cases
that produced fixed-frequency modes, the predictions of
Ref. [15] are mostly in agreement although one point is
borderline and another one may be unstable enough to
be in a chirping regime. Hence we see that using the sim-
plified, although elaborate, modeling akin to that used in
[15], might be in satisfactory agreement with DIII-D data
but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for ‹

scatt

(considered the only con-
tribution to ‹

stoch

) and ‹

drag

, although very insightful,
appears insu�cient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not su�cient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, ” (Ê ≠ �
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allows one of the phase-space integrals to be eliminated.
Upon integration over ·1 and redefinition of the integra-
tion variable z = ‹
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· one finds the following criterion
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the phase-space regions which contribute positively to the
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From GTC	gyrokinetic simulations for	passing
particles (Zhang,	Lin and Chen,	PRL	2008):

Unlike in	DIII-D,	ion transport in	NSTX	in	
mostly neoclassical

Inclusion of fast ion micro-turbulence

>0:	fixed-frequency likely
<0:	chirping likely
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is the e�ective stochasticity, which includes
‹

scatt

. In equation (1), the circumflex denotes normal-
ization with respect to “ = “

L

≠ “

d

(growth rate minus
damping rate) and t is the time normalized with the same
quantity. Vlasov simulation codes have shown [19, 20]
that the blow-up solutions of (1) are precursors to chirp-
ing behavior.

The type of nonlinear evolution of a wave destabilized
by a perturbing EP drive is strongly dependent on the
kernel of the integrals of Eq. (1), more specifically on
the ratio between the e�ective stochastic relaxation felt
by the EPs and the e�ective drag rate, as well as the lin-
ear growth rate. In Ref. [15], Eq. (1) was simplified by
using characteristic values for the collisional ‹

scatt

and
‹

drag

and conditions for the existence and stability of so-
lutions of the cubic equation were derived. In Fig. 1, we
test for the first time this prediction against modes mea-
sured in di�erent tokamaks. In order to determine mode
properties, we employ the kinetic-MHD code NOVA [21]
to compute eigenstructures and the frequency continua
and gaps. Its kinetic postprocessor NOVA-K [22, 23]
is used to calculate perturbative contributions that can
stabilize and destabilize MHD eigenmodes. In addition,
NOVA-K is also employed to compute resonant surfaces
in (E , P

Ï

, µ) space. In order to characterize the mode
being observed in the experiment, NSTX reflectometer
measurements are compared to the mode structures com-
puted by NOVA, employing a similar procedure as the
one used in Refs. [6, 24]. In DIII-D, similar identifi-
cation is performed using Electron Cyclotron Emission
(ECE) [25].

We see from Fig. 1 that about half of the chirping
NSTX modes lie in a region where a stable steady mode is
predicted by Ref. [15]. For the DIII-D experimental cases
that produced fixed-frequency modes, the predictions of
Ref. [15] are mostly in agreement although one point is
borderline and another one may be unstable enough to
be in a chirping regime. Hence we see that using the sim-
plified, although elaborate, modeling akin to that used in
[15], might be in satisfactory agreement with DIII-D data
but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for ‹

scatt

(considered the only con-
tribution to ‹

stoch

) and ‹

drag

, although very insightful,
appears insu�cient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not su�cient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, ” (Ê ≠ �

l

(P
Ï

, E , µ)),
allows one of the phase-space integrals to be eliminated.
Upon integration over ·1 and redefinition of the integra-
tion variable z = ‹

drag

· one finds the following criterion
for the non-existence of steady solutions of (1):
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(3)
For the resonances to be linearly destabilizing to pos-

itive energy waves, Int (plotted in Fig. 2) is the only
component of the criterion (2) that can be negative from
the phase-space regions which contribute positively to the
instability growth. N is a normalization factor consist-
ing of the same sum that appears in Eq. (2) except for
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Turbulence scattering explains why chirping is common in NSTX but rare in DIII-D
Proposed	criterion	for	Alfvén wave chirping	onset:
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Alfvén wave chirping 
quantitatively agrees 
with the criterion

chirping, NSTX fixed-frequencies, DIII-D and TFTR

From GTC	gyrokinetic simulations for	passing
particles (Zhang,	Lin and Chen,	PRL	2008):

Unlike in	DIII-D,	ion transport in	NSTX	in	
mostly neoclassical

Inclusion of fast ion micro-turbulence

>0:	fixed-frequency likely
<0:	chirping likely
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Correlation	between	the	emergence	of	chirping	and	a	substantial	
decrease	of	ion	micro-turbulence	in	DIII-D:
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• Theory	and	experiments	have	indicated	that	wave	chirping	response	is	linked	with	low	
turbulent	activity;

• Although	micro-turbulence-induced	fast	ion	transport	is	low	compared	with	Alfvén
wave-induced	transport,	it	competes	with	collisional	transport	(e.g.,	during	the	early	
non-linear	evolution);

• Micro-turbulence	should	be	factored	in	to	considerations	of	mode	drive	and	saturation	
in	burning	plasmas.

Conclusions
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Conclusions

• Dedicated	experiments	with	negative	triangularity on	DIII-D	will	explore	the	
consequences	of	this	chirping	study;

• NSTX-U:	possibility	of	use	of	HHFW	and	3D	fields	to	increase	fast	ion	stochasticity;
• Predictions	for	ITER	scenarios.

Future	possibilities	
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Future	possibilities	

The	ultimate	goal	of	this	dedicated	study	is	to	identify	the	applicability	of	reduced	
models	for	fast	ion	transport
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