M3D-C¹-K

Joshua Breslau

NSTX-U Results Review September 22, 2016

Background & Motivation

- M3D-C¹ is a mature nonlinear extended MHD code that has superseded the old M3D code for most tokamak applications because of its
 - Efficient, high-accuracy 5th-order-polynomial finite-element field representation with C¹ continuity
 - Fully implicit time advance scheme
 - More accurate model of gyroviscous stress and Hall terms, etc.
 - Fast 2D-complex mode of operation for linear problems
 - Finite-thickness resistive wall capability and in-mesh coils
 - Clean, modern Fortran programming paradigm
- A key remaining step to achieving feature parity with M3D-K is the development of a hybrid kinetic capability for energetic ions.

Particle loading

- Physical space initialization: uniform over (*R*, φ, z) cube with Jacobian to ensure uniformity over d³x.
 Particles outside mesh rejected.
- Velocity space initialization: use Jacobian to initialize distribution uniformly on d³v, with 0<|v|<sqrt(2E_{max}/m).
- Uniform particle weights.

Sample spatial distribution over four-partition KSTAR mesh: 5840 / 8192 = 32 x 8 x 32 particles deposited.

Particle push

- Particles advance by a specified time increment between fluid steps, using given 2D (real or complex) or 3D fields, subcycling as necessary.
- Hierarchical organization of particles by element, element ensemble, OMP thread, and MPI/mesh partition allows good optimization.
- 4th- and 5th-order Runge-Kutta ODE integration have been implemented; both show good energy, P_φ conservation over many time steps.

Sample trapped orbit ($\lambda_0 = 3\pi/5$)

- 5000 steps, dt (drift-kinetic)= 10^{-7} s \approx 5 gyroperiods.
- Initial KE=9.9995e+03 eV; final=9.9990e+03.
- Initial P_{0} =-0.476633; final=-0.476630.

Drift-kinetic/full-orbit comparison

• Full-orbit: 20,480 steps, dt= 10^{-10} s \approx 0.005 gyroperiods.

- KE conservation for fullorbit is good, but angular momentum conservation is relatively poor.
- A drift-kinetic step is about twice as fast as a full-orbit step, and can be around 1600x larger for comparable accuracy.

Pressure deposition

- RHS vectors for $p_{||}, p_{\perp}$ computed by integrating over particle delta functions within each element.
- LHS vectors computed by mass matrix inversion for each component.

- Very fast (time is independent of particle count).

Fluid coupling

- In progress!
- Plan: pressure coupling, i.e.,

$$n\left(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V}\right) = \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \Pi_{visc} - \nabla \cdot \Pi_{hot}$$
(1)

where

$$\Pi_{hot} \equiv \left(p_{\parallel} - p_{\perp} \right) \hat{\mathbf{b}} \hat{\mathbf{b}} + p_{\perp} \mathbf{I}$$
(2)

121

so that if $\delta p \equiv p_{||} p_{\perp}$, then

$$\nabla \bullet \Pi_{hot} = \left[\nabla (\delta p) \bullet \hat{\mathbf{b}} \right] \hat{\mathbf{b}} + \delta p \nabla \bullet (\hat{\mathbf{b}} \hat{\mathbf{b}}) + \nabla p_{\perp}$$
⁽³⁾

Fluid coupling, continued

 All terms in (3) are projected to the M3D-C¹ velocity representation with appropriate operators integrated by parts:

$$U: \iint d^2 R R^2 \nabla_{\perp} v_i \times \nabla \varphi \bullet,$$
$$\omega: \iint d^2 R v_i R^2 \nabla \varphi \bullet,$$
$$\chi: \iint d^2 R R^{-2} \nabla_{\perp} v_i \bullet,$$

e.g.

$$R^{2}\nabla\varphi \bullet \left[\nabla \bullet \left(\delta p \ \hat{\mathbf{b}}\hat{\mathbf{b}}\right)\right] = \frac{F}{B}\left(\hat{\mathbf{b}} \bullet \nabla \delta \mathbf{p}\right) + R\delta p\hat{\varphi} \bullet \nabla \bullet \left(\hat{\mathbf{b}}\hat{\mathbf{b}}\right)$$

I/O & Diagnostics

- The particle_test() subroutine writes out the entire trajectory of a predetermined subset of particles, tracking KE and P_{ϕ} .
- Subroutine hdf5_write_particles() uses parallel HDF5 to dump the entire particle distribution at a given time, including positions, velocities, and weights.
 - Utilities exist to extract position data from these to a text file, enabling comparisons and plotting with VisIt.
 - Utilities to visualize velocity distributions, pressure tensor components are now being developed.
- Checkpointing of particle distribution will be based on HDF5.

Summary

 Particle initialization, full-f push, pressure deposition, and I/O now working, tested and optimized for 2D complex version.

• Weight evolution, fluid coupling in progress.

• First linear validation tests on fishbone mode to be conducted in October.