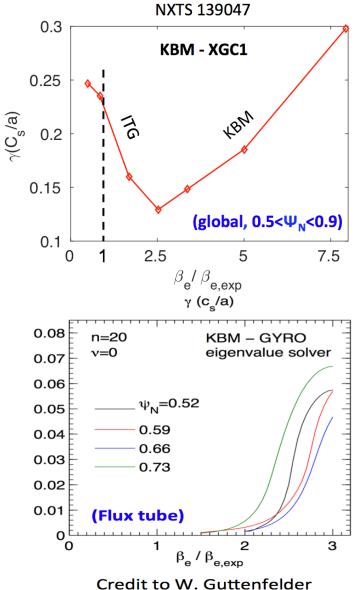
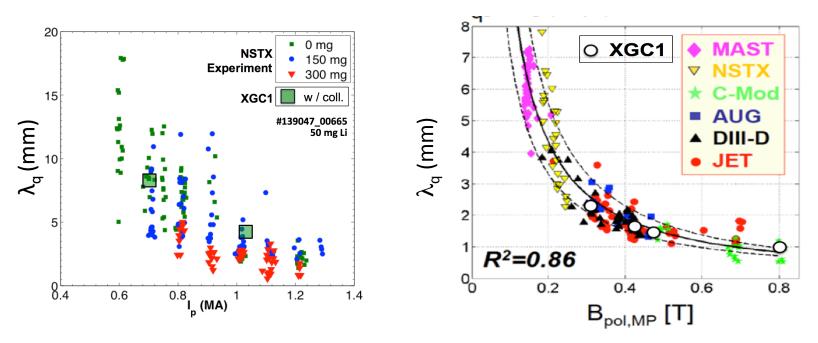
NSTX studies using XGC

Seung-Hoe Ku

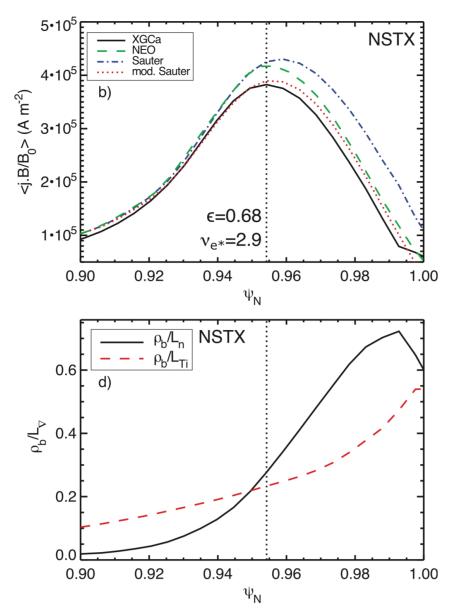

Understanding turbulence modes in NSTX edge plasma

Most likely, the turbulence modes seen at pedestal top [*Dialo, Nucl. Fusion* 2013] are nonlinear ITGs, not KBMs [*XGC '15: DPP '15, Notable Outcome* '15]


Cross verification between XGC1
 [global, J. Lang, S. Ku] and GYRO [flux tube, W. Guttenfelder] confirmed that β/
 L at pedestal top is well below β_{c.KBM}/L

 Peeling type kinetic E&M modes can exist in steep NSTX pedestal, but KBMs are not found, contrary to claim by GENE [*Notable Outcome 2015*]

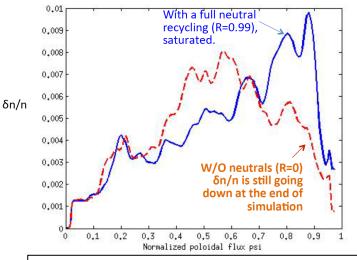
 Verified dominance of blobby turbulence in extended SOL (psi>0.98)



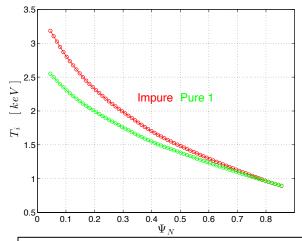
Divertor heat-flux width

- The $1/I_{P}^{\gamma}$ type scaling in NSTX is from collisional neoclassial orbit spread, but with $\gamma \gtrsim 1.5$.
- Only ~30% effect from blobby spread [Chang, IAEA16].
- Why γ≥1.5, not ~1 as in conventional tokamaks?
 There could be hidden variable

- Bootstrap current in NSTX pedestal is significantly lower than Sauter [*Hager, PoP '15*], and can alter stability boundary.
- Verified importance of neoclassical physics in NSTX edge: ExB shearing in L-H transition and EPH mode [Battaglia, XGC0]



On-going work for NSTX


- How important are the global E&M modes in NSTX?
- Collisional μ-tearing, Kinetic Peeling, KBMs, resistive ballooning in pedestal [*P. Porazik, R. Hager, J. Chowdhury et al., APS16*]
- How important is ETG in steep pedestal? [Chowdhury, APS16]
- Impact of the new bootstrap current on edge peeling [Hager, IAEA16]
- Why does the heat-flux width in NSTX have stronger Ip dependence? [Chang, IAEA16]
- Kinetic RMP penetration and transport [*Hager, APS16*]
- Blobby turbulence physics [*M. Churchill, APS16*]

NSTX-U experimental proposals

- How will the change of neutral recycling from Li and High-Z affect edge turbulence and confinement
- Divertor heat-flux width
- Use the 2nd beam to control edge T, n and η
 - External modification of the X-loss driven ExB shearing
 - Study the turbulence response
- Other possible topics for NSTX-U by XGC include
 - High- and low-Z Impurity studies (turbulence, neoclassical, edge ExB; together)
 - L-H transition physics
 - Edge rotation

Large difference in edge turbulence seen by XGC1 between zero and full neutral recycling.

Impurity could weaken ITG turbulence and increase the central T_i. [XGC1 2016, Carbon]