Kinetic Neoclassical Calculations

of Impurity Radiation Profiles*

D. P. Stotler, D. J. Battaglia, R. Hager, K. Kim (KAIST),

T. Koskela (LBL), G. Park (NFRI), and M. L. Reinke (ORNL)

Princeton Plasma Physics Laboratory

NSTX-U Results Review September 21 – 22, 2016

*This work supported by US DOE contracts DE-AC02-09CH114466 (PPPL) and DE-AC05-00OR22725 (ORNL).

Summary

- Modify drift-kinetic code XGC0 to include transport, ionization, and recombination of impurities.
- Use to simulate C and Ne in NSTX H-mode.
- First, demonstrate approach to coronal equilibrium.
- Then, isolate impacts of neoclassical effects on radiated power profile.
- Orbit squeezing & inward pinch result in increased core $P_{rad}(\psi)$,
 - & changes to ratios of charge state emissions at given T_e .

Objective: Do a Better Job of Simulating Radiated Power Distribution

- Fluid impurity transport models miss kinetic & non-local neoclassical effects.
- \Rightarrow Extend full-f, drift-kinetic XGC0 PIC code to resolve impurity charge states,
 - Particle push integrates guiding center Hamiltonian equations of motion,
 - E_r obtained via Ampere's Law averged over closed flux surfaces.
 - Also: realistic recycling, linear Fokker-Planck operator,
 - Had two *fixed* charge impurities,
 - * Add ionization & recombination using ADAS rates.

Approach to Coronal Equilibrium

- Comparing with CE $\Rightarrow n_e \& T_e$ fixed for all runs.
- This run: disable all physical processes except ionization & recombination.
- Profiles from NSTX H-mode 139047.
- All C⁺ initially.

- Dashed \Rightarrow rate computed from local n_e, T_e .
- Solid ⇒ actual rate after Monte Carlo collisions.

Time Evolution of L_{rad}

- Emulate Carolan (1983), Post (1995).
 - n_e & time enter only as $n_e \tau$.
- *T_e*, *n_e* variation is actually radial variation along profile.
 - $n_{\rm COTE} = 6.8 \times 10^{19},$
 - $-n_{\rm SOL} = 3.1 \times 10^{18} \, {\rm m}^{-3}.$

$$L_{\mathsf{rad}}(T_e, n_e) = \left(\sum_{q} P_{\mathsf{rad},q}\right) / \left(n_e \sum_{q} n_q\right);$$
$$P_{\mathsf{rad},q} = n_q n_e P_{\mathsf{ion},q}(T_e, n_e) + n_{q+1} n_e P_{\mathsf{rec},q+1}(T_e, n_e)$$

Add NC Effects \Rightarrow Modest Increase in $P_{rad}(\psi)$ & Large Changes in $P_{rad}^{q+1}(\psi)/P_{rad}^{q}(\psi)$

- In CE: $P_{rad,tot} = 0.18$ MW,
- With neoclassical effects: $P_{rad,tot} = 0.24$ MW.
- Ne: similar, with 65% increase.

- Recycling source keeps $C^+ \leftrightarrow C^{2+}$ & $C^{2+} \leftrightarrow C^{3+}$ nontrivial.
- $C^{\geq 3+}$ shifted inward.

Future Work

- Include kinetic electrons & effects of P_{rad} on energy balance.
- Include diffusive anomalous transport & core particle, momentum, energy sources ⇒ simulate individual discharges.
- Replace simple neutral model with DEGAS 2,
- Accurate treatment of SOL via XGCa.

BACKUP SLIDES

XGC Code Family Continues to Mature within EPSi

- XGC0: Full-f, drift-kinetic, multi-species PIC transport code.
- XGCa: Axisymmetric variant of XGC1 (Churchill P.2.23),
- XGC1: 5-D edge gyrokinetic PIC code.

XGC0 D⁺ and C⁶⁺ velocity distributions [Battaglia 2014].

XGCa bootstrap current calculations [R. Hager, K. Ma]

Implementation of Impurity Ionization & Recombination

- Add q/Z to list of phase space parameters.
 - For low-Z, include all charge states,
 - Will require "bundled" representations for high-Z.
- Evolve q via Monte Carlo ionization & recombination,
 - Generalized collisional radiative rates from ADAS,
 - * All are "96" files; C files dated Nov. 4, 1999, Ne are June 11, 2014.
 - Loaded into DEGAS 2 & accessed by new interface.
 - Electrons created, removed, cooled, etc., but T_e , n_e fixed here.
- Evaluate rates, etc. on 2-D mesh:
 - 50 surfaces $0.4 \le \psi_n \equiv \psi/\psi_{sep} \le 1$; 4 poloidal divisions each.
 - 5 SOL cells each above & below X-point, $1 \le \psi_n \le 1.05$,
 - 1 PFR cell.
 - \Rightarrow relatively simple model of open field lines.
 - XGCa will provide more detailed treatment.

q = 1 Source from Neutral Ionization // Coulomb Collisions

- Monte Carlo ionization of 2-D neutral density profile:
 - $n_0(\psi, \theta)$ from Monte Carlo calculation using fluid plasma background.
 - Source of neutrals: recycling with user specified rate,
 - * Spatial profile = poloidal distribution of D^+ lost to walls.
 - * 99% recycling rate for impurities here.
 - * 3 eV thermal energy distribution.
 - Impurity neutrals only undergo ionization,
- Linear Fokker-Planck collision operator:
 - 1. "Background" species loop \rightarrow loop over species & charge states,
 - For each, do Monte Carlo Coulomb collisions with all other "test" species → species & charge states.
 - 2. Apply "restoring" force on background particles.
 - 3. Enforce particle, momentum, and energy conservation.

Apply to NSTX H-Mode Plasma

- Electron & carbon profiles input to XGC0,
 - Similar to NSTX H-mode discharge 139047 at 580 ms.
 - No initial toroidal rotation.
 - Initial D⁺ density computed from quasi-neutrality.
- For comparison with coronal equilibrium, fix T_e , n_e in all simulations.

Neoclassical Effects on L_{rad}

- Initialize each run with CE charge state distribution.
- Add effects in stages:

- 1. Particle push & E_r
 - \Rightarrow orbit width & squeezing.
- 2. Impurity source via recycling,
 - Replace orbit- & X-loss,
 - Transient except for SOL.
- 3. Collisions,
 - Pitch angle scattering moves ions from confined to loss orbits,
 - \Rightarrow steady source of C⁺.
 - Anomalous transport would have same effect.
 - Inward pinch increases C⁴⁺, C⁵⁺ in core,
 - \Rightarrow more realistic E_r profile.

Neon Simulation Similar

Ne Radiation Density $\sim 2\times$ CE in Core

- In CE: $P_{rad,tot} = 0.95$ MW,
- With neoclassical effects: $P_{rad,tot} = 1.57$ MW.

- Ne⁺ & Ne²⁺ trivial in CE,
- Ne⁺ in neoclassical case also.