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Recent EM developments in GTS

In the past year we have been working on implementation of recently
developed perturbative particle simulation double-split-weight scheme for
simulation of gyrokinetic finite- plasmas in the gyrokinetic tokamak code
GTS.

The scheme uses two delta-f weights carried by each particle to represent
particles density and pressure.

Use of separate weight to represent particle pressure allows to alleviate so
called " cancelation” problem in finite- gyrokinetic simulations with fully
kinetic electrons.

We have successfully used this scheme for simulation of linear tearing
and drift-tearing modes, in both collisionless and semi-collisional regimes
in sheared slab and high-aspect ratio cylindrical cross-section tokamak
geometries.

In the last several month this scheme has been extended to includes key
toroidal effects for the simulation of linear semi-collisional micro-tearing
(MTM) and kinetic ballooning (KBM) modes in realistic aspect ratio
cylindrical cross-section tokamak.

The initial simulations tests of KBM modes using the modified turbulence
code GTS has been successful.



Double-weight EM Perturbative Scheme

e Introducing particle weights é fo = w.Fp., the VIasov equation for electrons
becomes (9, = (1/r)0y):
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e Next, we introduce w, = 3H‘we — keOyA the equation for w becomes:
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e \We also introduce second weight w, = we + meayfdtgb which satisfies the
equation:
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e Here the background current gradient is related to ¢(r) profile by Am-

pere’'s law:
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Field Equations

With introduction of new weights w. and w,. , the field equations become

Vig = So+ (kn + ki) (Fo — 1)0y¢ + kril 1049, (1)
and
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Here m = m;/m. and vp = fV(v)(v“/vthe)QFog(v)d?’v.
Sp = /vﬁFo(we — (wy;)), SP= /I/(v)vaeFOe, S = /vdrvH(we — (w;)) Fo

where Q quantities are now calculated by using new weight w as for
example S¢ = fz/(v)v”zDeF()e and () quantities are calculated by using the
weight w.

To find A we integrate in time

The first term on the right in equation for £} involves commutator [Vi, 8,|]
which requires only second derivative of potential and first derivative of
g-profile and therefore can be neglected for modes with k,a > 1.



Simulations of shear-Alfven wave
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Simulation of Shear Alfven wave with a minor radius similar to NSTX:
a/p; = 165.

dlg = 1.65p;, dr = 1.65p;, dt(cs/R) = 0.06 with 32 poloidal planes, N, =
20.

(m,n) = (1,1) component of log|E)| at r/a = 0.56 (corresponding to ¢
= 2).

The frequencies of the Alfven wave were w = (2.7 4+ 0.15¢)cs/R for g =
5%, and w = (5.4 + 0.042i)c,/R for B = 1%.

Approximate formula w = (n — m/q)//B(cs/R) gives w = 2.2¢s/R and
w = 5.0¢s/R.



Simulations of global drift-tearing mode
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dly = 0.25p;, dr = 0.15p;,dt(cs/R) = 0.06, N, = 20.

log|EH\ at r/a = 0.56 (corresponding to q = 2); radial profile of E) at
t(cs/R) = 130; ¢(r,0) at t(cs/R) = 130 for a/p; = 16.
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log|E||| at r/a = 0.56 (corresponding to g = 2); radial profile of E) at
t(cs/R) = 23; ¢(r,0) at t(cs/R) = 23 for a/p; = 16.

Weode = 0.28 + 0.38i(cs/R), weigen = 0.32 + 0.40i(cs/R).



Simulations of micro-tearing mode with no
curvature drifts
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e dlg = 0.25p;, dr = 0.055p;, dt(cs/R) = 0.06, N, = 20.

e ¢(r,0) for runs with different values of electron collision frequency.

e log|Ey| at r/a = 0.35 (corresponding to ¢ = 1.83 = 11/6),
of EH at t(cs/R) = 23.

radial profile



Simulations of Toroidal KBM mode for
Cyclone-like parameters
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o(r,0) in poloidal plane.

m;/me = 3674, Be = 3.3%, R/Lie = R/Ly = 6.92, R/L, = 2.22, R/a =
2.8, a/pi =76,

q(r) =1.254+0.67(r/a)? 4+ 2.38(r/a)3 — 0.06(r/a)*.

dlg = 0.7p;, dr = 1.2p;, dt(cs/Ly) = 0.01, N, = 20.



Rigorously reformulate electron field-particle dynamics based on ideas
developed /tested in simple cases, taking into account existing GTS framework

o Work on field quantity F) = —b - V¢ — (1/c)0A; /0t or | E|dt instead A
Ah = —CfEHdt; A = AH(tQ) — Cfb : Vdet

e Solve ¢ f-equation for reformulated perturbed electron distribution dh,
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Associated weight equation:
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e Field equations for A" (generalized Amperes law), A% and ¢
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e We will focus on completion of implementing/testing/verifying generalized
EM algorithms in GTS and initial applications, with a goal of bring this
highly desirable capability to production for NSTX-U physics applications
and other studies



Conclusions

In the near future we will continue testing the double-split-weight EM
scheme in GTS against available results for KBM and semi-collisional
MTM eighenmodes in tokamaks with circular flux surfaces.

Implementation of generalized, comprehensive EM algorithm into GTS is underway

Apply GTS to current problems interest to NST X-U.



	theory_retreat2016
	NSTX_review2016_b
	NSTX_review2016_b
	theory_retreat2016



