

GTS simulations of NSTX L- and H-Mode Plasmas

Y. Ren¹

W. Wang¹, W. Guttenfelder¹, S.M. Kaye¹, J. Ruiz-Ruiz², S. Ethier¹, R.E. Bell¹, B.P. LeBlanc¹, E. Mazzucato¹, D.R. Smith³, C.W. Domier⁴, H. Yuh⁵ and the NSTX-U Team *1. PPPL* 2. MIT 3. *UW-Madison* 4. *UC-Davis 5. Nova Photonics*

> NSTX-U Results Review September 21st – 22nd, 2016

Why are Global Effects Important?

- Global effects are considered to be important for STs
 - Local assumption of flux tube simulations based on $\rho^*{\sim}0$
 - Large ρ^* of STs due to weaker toroidal field compared to conventional tokamaks ($\rho^* \sim 0.01$ for NSTX)
 - Global effects, i.e. turbulence spreading, requiring global GK codes
- Study of global effects are important for achieving predictive capability for future STs
 - Need to validate first principle model for developing reduced transport model with global effects
- Serious validation efforts applying global GK codes to ST plasmas are still lacking

NSTX L-mode plasmas

GTS Simulations were Carried Out to Assess Thermal Transport before and after RF Cessation

- <15% variation in equilibrium quantities in the high-k measurement region before and right after the RF cessation (over 17 ms)
- Equilibrium quantities not expected to change significantly on the time scale on which the turbulence changes (0.5-1 ms)
 - Energy confinement time~ 10 ms

Ren et al., PoP 2015

Similar Energy Fluxes from GTS are Seen before and after the RF cessation

- Electron energy flux matches experimental value after the RF cessation but not before
 - Experimental values from TRANSP+TORIC analysis
- Ion energy flux is over-predicted Electron thermal transport
 Ion thermal transport

0.4 0.4 at t=482 ms Q_{i,GTS} after RF before RF cessation e,exp cessation 0.3 0.3 $Q_{e,GTS}$ after RF (MW) 0.2 0 Q_i (MW) after RF cessation 0.2 e,exp cessation 0.1 0.1 before RF at t=482 ms Q_{i,exp} cessation 0 120 125 130 135 140 145 1₂₀ 125 130 135 140 145 R (cm) R (cm)

NSTX-U

NSTX-U results review, Y. Ren, September 22th, 2016

NSTX H-mode plasmas

Current Ramp-down in NSTX H-mode Plasma Leads to Core Density Gradient Increase

NSTX-U results review, Y. Ren, September 22th, 2016

Ion Energy Flux from GTS Is in Agreement with Experiment

 Ion energy flux from ionscale turbulence contributes significantly at R>135 cm

- Neoclassical ion thermal transport can account for experimental ion thermal transport
- Ion-scale turbulence suppression due to ExB shear

Electron Thermal Transport is Significantly Underpredicted by GTS

- Electron energy flux from GTS is only significant at R>135 cm
 - Much smaller than experimental electron thermal transport
- Contribution from ETG and electromagnetic effects may be important

Dissipative-TEM May be Important for NSTX H-mode Plasmas

- Dissipative-TEM found due to strong ∇n in an NSTX H-mode right after ELM
 - -Capable to survive Strong E × B shear
 - -Drives experimentally relevant transport
 - –DTEM-transport increases with ν_e
 - -CTEM strongly suppressed by collisions in STs
 - -C/DTEM-free regime in low collisionality

0.5

0.0

-0.5

- (possibly relevant to NSTX-U & ST-FNSF)
- Roles of DTEM further investigated over broad
 NSTX discharges

0.6 0.8 1.0 1.2 1.4

NSTX-U results review, Y. Ren, September 22th, 2016