TRANSP Analysis of NSTX-U L- and H-modes

S. M. Kaye, PPPL NSTX-U Results Review Sept. 22, 2016

New NSTX-U tool: Between and Among Shot TRANSP (BEAST) will aid experiment execution

NSTX-U BEAST TRANSP run

- Typical BEAST run completed in 8 mins
 NSTX-U has 15-20 mins between shots
- In preparation for next shot, session leader can gauge:
 - Non-inductive fraction
 - Beam loss
 - Confinement quality

ΓΧ-υ

Any TRANSP quantity...

0.50

SECONDS

TRANSP Runs Performed for Many L- and H-mode Discharges

- Perform global/thermal confinement analysis
- Study local transport (interpretive and predictive)
- Hampered by either no CHERS (when second beam on) or poor signal (at low input power)
 - Often use Chang-Hinton neoclassical prediction for T_i
 - Flat Z_{eff}=2 profile
 - Feedback on AFID for neutron match
- L-mode data taken from Beam #1 L-mode scan (W. Guttenfelder)
 - I_p = 0.6 to 1.0 MA
 - $\dot{P}_{inj} = 1 \text{ to } 5 \text{ MW}$
 - $n_{e,bar} = 2.8 6 \times 10^{19} \text{ m}^{-3}$
- Compare to 204118 (H-mode)

Thermal Confinement Trends Difficult to Extract Due to Poor Coverage Across Parameter Space

L-Mode

H-mode Confinement Enhancement Well Above that of Lmode (and >=1)

Time (sec)

Reduction in χ_e Going From L- to H-; RLW predicts T_e

TX-U

Caveat: Linear GYRO indicates microtearing is NOT dominant µinstability

