

Parametric investigation of CAE & GAE instability and effect on thermal confinement in NSTX S. Tang, UCLA N.A. Crocker, T.A. Carter, E.D. Fredrickson, N.N. Gorelenkov, W. Guttenfelder **NSTX-U Results Review 2016 Princeton Plasma Physics Laboratory** Sep 21-22, 2016

Database extended with spectral characteristics of CAEs and GAEs

- Existing database with plasma parameters from TRANSP extended to include characteristics of CAEs and GAEs
 [Fredrickson 2014]
 - Database spans 195 total shots and 1051 total times
- Frequency, mode power, and toroidal mode number calculated for each 50ms interval
 - Divide into 1ms records and FFT
 - Keep points (t,f) that are a good fit to single toroidal mode number
 - Power weight (dB^2) average f, n
- Investigate whether these modes play a role in anomalous electron transport, as well as understanding physics controlling the instability

Stutman 2009

Beam power correlates with mode power

- Correlation found between total mode power (|db|^2) and TRANSP calculated absorbed beam power
- Power law found $|db| \sim P_{abs}^{2.5}$
- Roughly consistent with nonlinear simulations and analytic theory which have shown: db ~ P_b^2

[Lestz & Belova, 2016]

Toroidal mode number and frequency highly correlated

- Normalize ω and n as:
 - $-\omega
 ightarrow \omega/\omega_{ci}$
 - $k_{tor} \rightarrow k_{tor} / (\omega_{ci} / \max(v_{b||,inj})), k_{tor} = n/R$
 - Motivated by parallel resonance condition
- Perform mode power (dB^2) weighted fit

Correlation improves with normalization motivated by parallel resonance condition

 Instability thought to be governed by Doppler shifted cyclotron parallel resonance condition

 $-\omega_{ci} = \omega - kv_{b||}$

- k and destablizing $v_{\text{b||}}$ not known \rightarrow k_{tor} and max($v_{\text{b||,inj}})$ used
- Correlation coefficient improves from ρ = 0.52 +/- 0.05 to ρ = 0.85 +/- 0.05

 $-\rho$ calculated using dB² weighted

 Suggests that resonance condition plays some role in governing instability

T_{e0} correlates with both <f_{norm}>, <n_{norm}>

- T_{e0} correlates with both $< f_{norm} >$ and $< n_{norm} >$ with statistical significance, with $\rho = 0.32 \pm 0.05$ and $\rho = 0.45 \pm 0.05$ respectively
- $< f_{norm} > < n_{norm} > control T_{e0}$?

$min(\tau_e)$ in core correlates with $< f_{norm} > , < n_{norm} >$

- χ_e ideal indicator of anomalous transport but very noisy
 - Connects to Stutman PRL 2009
- $\tau_{e}(\rho)$ integrated, low noise
 - Median smoothing to eliminate outliers
 - take minimum value between $\rho = 0.1$ and $\rho = 0.5$

- Correlation of $< f_{norm} >$, $< n_{norm} >$ with τ_e gives $\rho = 0.296 \pm 0.05$, 0.302 ± 0.05 respectively
- Modeling assume classical fast ion diffusivity $\rightarrow \tau_e$ controlled by anomalous fast ion transport?
- Some f, n more effective at orbit stochastization?

Backup Slides

Mode power vs τ_e

Rho = - 0.356 +/- 0.03 R² = 0.13

NSTX-U Results Review 2016, "Parametric investigation of CAE/GAEs," S. Tang, 9/20-21/2016

 $< f > vs \tau_e$

Rho = 0.296 +/- 0.05 R² = 0.09

NSTX-U

NSTX-U Results Review 2016, "Parametric investigation of CAE/GAEs," S. Tang, 9/20-21/2016