ITER High Priority Research and possible JET collaboration

RWM Physics

J. Menard, for MHD-SFG

25 August 2005 PPPL

Outline

• RWM feedback benchmarking/modeling

• ELM-RWM interaction

• RWM critical rotation vs. q_{min} in AT – Analysis results from DIII-D – Proposal to compare Ω_{crit} vs. q_{min} on JET ITER RWM benchmarking VALEN modeling results 6th ITPA MHD topical group meeting

Tarragona, Spain 4 July 2005Presented by J. BialekColumbia University

VALEN RWM dispersion relation For ITER benchmark model with fast L/R<1 µs [approximates current control] 10⁻ #1 G_p=10¹²[v/w] (real) Can stabilize up to @ 1 gauss γ_{passive} = 43.88 [1/s] 10³ I_{cc} =0.518 KA $\begin{array}{l} \label{eq:2.1} \mbox{#2 } G_p = 10^{13} (\mbox{complex c. pairs}) \\ \mbox{@ 1 } gauss \\ I_{cc} = 5.18 \ \mbox{KA} \\ \mbox{#3 } G_p = 10^{14} (\mbox{complex c pairs}) \\ \mbox{@ 1 } gauss \\ I_{cc} = 51.8 \ \mbox{KA} \end{array} \begin{array}{l} \mbox{Figure 1} \\ \mbox{Figure 2} \\$ 10² 10¹ passive ideal wall limit 10⁰ #3 #2 #1 best **10**⁻¹ **Best results use** results C = 69% ((2.52 / 3.5) $G_{p}/G_{d} = 10^{3}$ **p**_n = 3.196 10⁻² 3 3.5 2.5 (L/R = 16.8 μH/19.29 Ω β = 0.87 μ s for each coil) n tarragona.2005

Performance with 6 external coils with 10 s time constants Same G_p & G_d, add blanket modules to model (no ports)

<u>Graphical summary VALEN RWM best results</u> Internal RWM coils perform significantly better than external RWM coils

Feedback Stabilization of Resistive Wall Modes in DIII–D

by E.J. Strait, General Atomics

J. Bialek², M.S. Chu¹, A.M. Garofalo², G.L. Jackson¹, R.J. La Haye¹, G.A. Navratil², M.Okabayashi³, H. Reimerdes², J.T. Scoville¹

¹General Atomics, San Diego, USA ²Columbia University, New York, USA ³Princeton Plasma Physics Laboratory, Princeton, USA

Presented at the ITPA Topical Group on MHD, Disruptions, and Control Tarragona, Spain

July 4-July 6, 2005

ELMs Can Trigger Growth of An Unstable RWM

• Hypothesis: Near marginal stability for the RWM . . .

- ELM excites a weakly damped RWM at finite amplitude
- Magnetic braking by the RWM causes plasma rotation to decrease
- If sufficient braking occurs during the damping time, the RWM becomes unstable

• ELMs may determine the minimum feedback current requirement

- Alternatively, ELM suppression may reduce the requirements for RWM feedback current

Threshold Rotation for RWM Stabilization Increases with q_{min}

• Previous experiments have suggested a dependence $\Omega_{crit} \sim 1/q_{95}^2$

• These experiments suggest a dependence on q_{min} : $\Omega_{crit} \sim q_{min}^2$

Ideal and Resistive Plasma Stability Modeling for DIII–D AT Scenarios

by

J. Menard,¹

M.S. Chu,² J.R. Ferron,² A.M. Garofalo,³ C.M. Greenfield,² R.J. La Haye,² T.C. Luce,² M.A. Makowski,⁴ M. Okabayashi,¹ H. Reimerdes,³ E.J. Strait,² and M.R Wade⁵

¹Princeton Plasma Physics Laboratory, Princeton, New Jersey ²General Atomics, San Diego, California ³Columbia University, New York, New York ⁴Lawrence Livermore National Laboratory, Livermore, California ⁵Oak Ridge National Laboratory, Oak Ridge, Tennessee

> Presented at 46th Annual Meeting of the Division of Plasma Physics Savannah, GA

> > November 15–19, 2004

q_{min} >2 MAY BE MORE UNSTABLE TO *n*=1 RESISTIVE WALL MODES

Predict *n*=1 RWM unstable near $\beta_N = 3.5$ for $\Omega_{\phi} \approx \Omega_{\phi-expt}$ for $q_{min} > 2$

Observe increased RWM/EF feedback activity at high β_{N} (using C-coil feedback)

BOTH MARS DAMPING MODELS PREDICT INCREASED $\Omega_{\phi-CRIT}$ WHEN q_{min} >2

 $-\Omega_{\phi-expt}$ > $\Omega_{\phi-crit}$ from both damping models - consistent with experiment

<u>JET collaboration relevant to ITER:</u> Stability of AT discharges on JET

- Will work through existing PPPL/DIII-D collaboration
 - T. Luce, E. Joffrin, etc.
 - Februrary/March 2006
- Task Force S2 "Test of shear optimised scenarios"
- ITPA goals:
 - Find beta limits in discharges with $1.5 < q_{min} < 2.5$ and $0 < q(0)-q_{min} < 0.5$
 - Operate above no-wall limit, make RWMs, compare to ITB discharges
- Contribute primarily to analysis and interpretation
 - Mode identification of beta-limiting phenomena
 - Kinetic/MSE reconstructions
 - Need to ID and create desired q-profile shape during run
 - Stability calculations before and during experiment
 - Are RWMs more unstable when q_{min} > 2?
- PPPL contributions could/should be:
 - TRANSP analysis of discharges in support of accurate stability analysis.
 - The stability analysis itself: DCON, MARS, PEST (Betti/Hu?), M3D...