NSTX Program Addresses Broad Fusion Energy Sciences Missions Through Scientific Investigations

- Determine physics principles of ST (very high β_T and A ~ 1.5)
- Complement lower β_T and A ~ 3 experiments in addressing key scientific issues of fusion plasmas
- Support preparation for burning plasma research (ITPA, ITER) and benefit from it
- Complement ITER by establishing attractive configurations for Component Test Facility (CTF) and Demo

NSTX Plans to Advance Research in Error Field, Locked Mode, RWM, and *AEs in FY06-07

NSTX Plans to Make Decision on FY08 MHD Milestone – NTM or Pedestal (ELM)?

ITER Design Issues that Need Urgent ITPA Input

Relevant TG	Issue	Comment
soldiv	Physics guidelines for disruptions thermal load (update)	
mhd	Examinations of current quench time for the fastest disruption s	
mhd	Disruption mitigation scenarios and guidelines for design of mitigation system s	
mhd/ pedestal	Design of coils to mitigate / control ELMs and resistive wall modes	Acceptable island size in the core plasma
pedestal	Pellet injection for ELM control	Inboard or outboard
soldiv/ pedestal	Heat load on first wall	Especially due to ELM
soldiv	Carbon erosion/deposition/control of tritium inventory and material choice	Especially tritium retention* and its removal
soldi v	Private region PFC and necessity of Dome	discussed at TGM in Jul y
mhd	Second circuit for plasma vertical stabilizatio n	Noise level
mhd	AC losses during RWM stabilization by side correction coil s	Noise level

* Understanding of large difference of fuel gas retention in different machines or in the same machine with different configuration/operation

Major Physics Issues for ITER Operating Regimes

ALL REGIMES:

- Disruption avoidance/mitigation T retention control
- Type-I ELM avoidance/mitigation

INDUCTIVE HIGH-Q REGIME: Type-I ELMy H-mode (15MA, Q ≥10, β_N =1.8, HH=1) HYBRID REGIME: Type-I ELMy H-mode (13MA, Q ≥5, β_N =2.0, HH=1)

- Energy confinement at high density
- Density limit: Borrass, Greenwald, B2Eirene modelling [$(0.45/1.0/1.4) \times n_G$]
- Particle transport: core plasma fuelling, density peaking
- NTM suppression

IMPROVED HYBRID REGIME: (10-12MA, Q~10, $\beta_N \ge 2.5$, HH ≥ 1.2)

- Accessibility of Improved H-mode: q(0)>1; P_{loss}/P_{thr} >2
- Sustainment of Improved H-mode: prevention of sawteeth
- NTM suppression
- Prevention of He and impurity accumulation

STEADY STATE REGIME: (9MA, β_N =3.0, Q ≥5, HH=1.4-1.6)

- ITB formation at large radius SS scenarios esp. CD, beta, confinement & divertor
- ITB sustainment at high β_N , $T_e \approx T_i$, low v_{tor} : control of q and pressure profiles
- Compatibility of core and edge transport barriers
- RWM suppression: plasma rotation; feedback stabilization
- Prevention of He and impurity accumulation

MHD Suggestions of NSTX Participation from ITPACC-IEA-LT Joint Meeting, November 1-2, 2005

ID No	Topical Group	2006 Proposal Title	Keypersons ¹	Devices ²	2005 Ext	Ctg	Comments/ Recommendations/ Results	NSTX Forum	DIII-D Forum
MDC-2	MHD, Disruptions & Control	Joint experiments on resistive wall mode physics	<u>H Reimerdes,</u> M Okabayashi (DIII-D), <u>M Gryaznevich(JET)</u> , S D Pinches (JET), R Koslowski (TEXTOR), M Takechi (JT60-U), S Sabbagh (NSTX), H Zohm (AUG)	DIII-D, JET (experiments scheduled Feb 06), NSTX, JT-60U, AUG and TEXTOR	YES	E	Report,		Sabbagh
MDC-4	MHD, Disruptions & Control	Neoclassical tearing mode physics - aspect ratio comparison	M Maraschek (AUG), D Howell (MAST), E. Frederickson(NSTX), R. LaHaye(DIII-D)	AUG, MAST, NSTX, DIII-D	YES	Е	Report. Must have either AUG or DIII-D to vary A.		Fredrickson
MDC-5	MHD, Disruptions & Control	Comparison of sawtooth control methods for neoclassical tearing mode suppression	O Sauter, <u>R Pinsker</u> , R La Haye (DIII-D), A Mueck <u>, H. Zohm</u> (AUG), <u>S. Coda(JE</u> T), R Buttery (JET), ,J Menard (NSTX), T Goodman (TCV), Yi Liu (HL2A), Wukitch(C-mod),F. Gandini(FTU)	AUG , DIII-D, JET, NSTX, TCV and HL2A, C-mod, FTU	YES	Ш	Report		Menard
MDC-6	MHD, Disruptions & Control	Low beta error field experiments	<u>S Wolfe</u> , I Hutchinson (C-Mod), T Hender(JET), T Scoville (DIII- D), R Koslowski (TEXTOR), D Howell (MAST), Menard (NSTX)	C-mod, TEXTOR, MAST, DIII-D, NSTX, JET(done)	YES	E	Report		Menard
MDC-9	MHD, Disruptions & Control	Fast ion redistribution by beam driven Alfvén modes and excitation threshold for Alfvén cascades	A.Fasoli, <u>D.Borba(JET/AUG)</u> , S.Pinches and D.Testa (JET), K. Shinohara (JT60-U), <u>W.Heidbrink (</u> DIII-D),R. Nazikian(DIII-D) E. Frederickson(NSTX), M. Gryaznevich/S. Sharapov(MAST), P. Martin (AUG)	JT-60U, JET, DIII- D, NSTX, MAST, AUG	YES	E	Report		Fredrickson
SSO-2.2	Steady-State Operation	MHD effects on q- profile and confinement for hybrid scenarios	S. Guenter, R. Buttery, M. Wade, Isayama. C. Kessel	AUG, JET, DIII-D, JT-60U, NSTX, C- mod	YES	E	Report		Kessel

Extensive Facility and Diagnostic Capabilities on NSTX

Device Parameters

R = 85 cm

a = 65 cm $\kappa = 1.7 - 2.7$ $\delta = 0.3 - 0.8$ $B_{T} = 5.5 \text{ kG}$ $\tau_{\rm TF} \sim 3 \, {\rm sec} \sim 6 \, \tau_{\rm skin} \, (3.5 {\rm kG})$ $I_{p} = 1.5 \text{ MA}$ $V_{p} = 14 \text{ m}^{3}$ E_p ~ 430 kJ $P_{NBI} = 7.4 \text{ MW} (110 \text{ kV})$ $P_{HHFW} = 6 MW (30 MHz)$ 350°C vessel bake Nearby passive plates RWM / EF control coils I_{сн} ~ 400 kA 60 cm dia. ports Wide tang. access

Major Diagnostic Systems - Collab **Confinement Studies - Tang Access** Magnetics for equilibrium reconstruction (CU) Diamagnetic flux measurement Multi-pulse Thomson scattering (30 ch) T-CHERS: T_i(R) and V_i(r) (51 ch); P-CHERS ('07) Neutal particle analyzer (NPA, 2D scanning) Solid state NPA (UCIrvine) FIReTIP interferometer (119mm, 6 ch) (UCD) Density Interferometer (1 mm, 1ch) (UCLA) Visible bremsstrahlung radiometer (1 ch) Midplane tangential bolometer array X-ray crystal spectrometer: $T_i(0)$, $T_e(0)$ MSE-CIF (8ch) (Nova); 14-19ch ('06-'07) MHD/Fluctuation/Waves High-n and high-frequency Mirnov arrays Ultra-soft x-ray arrays – tomography (4) (JHU) Fast X-ray tangential camera (2us) (PSI) uwave reflectometers (UCLA) FIReTIP polarimeter (6 ch, 600 kHz) (UCD) Tangential µwave high-k scattering (UCD) Electron Bernstein wave radiometer Fast lost-ion probe (energy/pitch resolving) Fast neutron measurement Locked-mode detectors RWM sensors (n = 1, 2, and 3)**Edge/divertor studies** Reciprocating Langmuir probe (UCSD) Gas-puff Imaging (2µsec) Fixed Langmuir probes (24) (ORNL) Edge Rotation Diagnostics (T₁, V₁, V_{pol}) 1-D CCD H_a cameras (divertor, midplane) (LLNL) 2-D divertor fast visible camera (HiroU, Nova) Divertor bolometer (4 ch) IR cameras (30Hz) (3) (ORNL) Tile temperature thermocouple array Scrape-off layer reflectometer (ORNL) Edge neutral pressure gauges (UWash) **Plasma Monitoring** Fast visible cameras (Nova, HiroU, ORNL) Visible survey spectrometer VUV survey spectrometer "Optical" X-Ray array spectrometer (JHU) Fission chamber neutron measurement Visible filterscopes (LLNL) Wall coupon analysis X-ray crystal spectrometer (astrophysics) (KBSI)