Possible subjects for RWM Feedback experiments - Joint explorations by DIIID/NSTX group

- RWM Controllability with External Coils and Extrapolation of the ITER Performance
- Comparative Study of NSTX "Thick shell" and DIII-D "Thin shell" with ELM Induced RWM

RWM Controllability with External Coils and Extrapolation of the ITER Performance - A joint exploration by DIIID/NSTX group -

- The DIIID / NSTX are uniquely positioned for addressing crucial issues of RWM feedback.
- ITER external kink environment is a more complex geometry than DIII-D with the vacuum vessel as the stabilizer.
- NSTX: a double-shell like structure because of the additional complexity by the passive stabilizer plates.
- The different mode structures DIIID/NSTX by aspect ratio difference will assess the robustness of RWM controllability.
- Propostion:

To test external control coil performance in RWM stabilization in both NSTX and DIII-D in order to make reliable extrapolations to ITER (assuming no internal coils are added).

- Control methods identical for both devices, with flux sensors that are less sensitive to non-RWM phenomena and compensation logic (proposed by Y. Liu),
 - assuming the performance compariosn with Bp sensors to be carried out
- Benchmarking / coefficient-setting with the same codes to the two different devices. MARS-F, VALEN, Morrell-Ming code
- Magnetic breaking in NSTX (like what was done last year on DIII-D) to observe evidence for direct RWM feedback. On DIII-D, rotation breaking with the counter beam line to match data set for comparison to NSTX.
- Using identical feedback controls and sensors in low rotation plasmas will add more confidence to extrapolate to the external coil control option in ITER

Comparative Study of NSTX "Thick shell" and DIII-D "Thin shell" with ELM Induced RWM

- ELM event induces reproducible n=1 RWMs
- Feedback reduces the RWMs activity
- Process reveals the resonant component of wall eddy current

Issues

• Observation of RWM time behavior

