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6 non-axisymmetric RWM/EF coils and 3 switching 
power amplifiers (SPA) used in experiments

NSTX RWM/EF coil and SPA capabilities:
– 3 opposing coil pairs in anti-series (n=1, 3)

• n=2 interconnection also possible
– 3 independent SPA circuits – 3.3kA, 7.5kHz
– Can produce 10-15G n=1 resonant B⊥ at q=2
– EF correction, magnetic braking, feedback

VALEN Model of NSTX (Columbia Univ.)

6 ex-vessel midplane control coils
+ 24 BR and 24 BP in-vessel sensors

SS Vacuum
Vessel

Copper passive
conductor plates



Error-field inferred from high-β experiments has 
direction opposite to that obtained at low ne & β

Inferred 2/1 EF at Low-β Inferred 3/1 EF at High-β

q=3
ne=4x1019m-3

B31= 0.18G
φEF = 320º

βn~4

B21 = 1.3G
φEF = 140º

q=2
ne=4x1018m-3

βn~0.4

⇒ additional EF source is present, or EF is not static



TF flag-joint resistance measurements imply interaction 
between OH transformer and TF coil ⇒ TF motion

Magnetics measure n=1 
radial field ∝ IOH x ITF ⇒
Can infer TF shift direction:

Inferred shift direction
consistent w/ direction of 
joint resistance variation

Accumulated data strongly suggests OH/TF interaction causes TF motion 
which creates a time-dependent error field that varies throughout shot 

even when all other plasma parameters and coil currents are fixed



Accurate modeling of n=1 BR error field from OH×TF 
requires inclusion of time lag and polarity dependence

• Have developed TF model allowing both shift and tilt – 4 degrees of freedom
• Filter time-constant of approx. 100ms needed to capture time lags (inertia?)
• Prediction of EF at sensor prediction of EF in plasma

Measured
& Simulated
error field
at sensors



Locked-mode experiments indicate m=0 EF 
component may dominate rotation damping & locking

Assuming I have all the signs correct…
• m=1, 2 components larger in shot with later locking
• But, m=0 is reduced in shot with later locking
• NOTE: external EF is ramped linearly beginning at 140ms

Locking time Locking time
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High-beta experiments also indicate m=0 EF 
component may dominate rotation damping & locking

• NOTE: external EF reaches flat-top at 500ms
• m=1, 2 components are again larger in shot with later locking
• m=0 is again reduced in shot with later locking
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Locking time Locking time

NOTE minimum in EF 100ms
after zero-crossing of OH



Low and high-beta data can be used to compute 
empirical scaling for locking disruption threshold 

• Empirical threshold: √ B2
m=0 + 0.22×B2

m=2 < 2.1 Gauss
– Addition of m=1 component changes m=0+2 fit very little

• Good fit with only m=0 and m=2 components: ± 12% variation
• Poor fit if only m=0 component is included: ± 38% variation

High βLow β

Field
[Gauss]
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XP614: Comparison of EFC techniques at high βN – Menard

- Longest duration, highest βN achieved with OHxTF predictive EFC (119622)
- Pre-programmed ramp (119615) guesses at OH evolution ⇒ not as good



Applying EFC sustains plasma rotation and can increase β
(119609 no EFC - dashed, 119621 w/ EFC - solid)

- Scan of EFC amplitude finds that optimal proportionality value (119649) results in  
higher rotation and beta than shot with non-optimal value (119645 - dashed) 

Rotation responds strongly to only
20% variation in EFC amplitude



Applying EFC keeps rotation high at location of q=2,3 surfaces

No EFC With EFC

q=2
(w/o MSE)



High βN phase is longer in recent 750kA long-pulse 
shots using EFC, but rotation is lower late in shot…
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• After 800ms, rotation decreases 
with n=1 EFC current present

• Suspect EFC amplitude/phase is 
not optimal late in shot (higher IOH)
– Similar trend seen in 1MA shots



XP618: Optimize error field correction vs. rotation – LaHaye, Strait

- Observe rotation modulation at 2nd harmonic of applied field
- Little to no rotation modulation observed below no-wall limit

∆t ≈ 40ms
f ≈ 24Hz

f(n=1) = 12Hz f(n=1) = 12Hz
βN=3-4
Src C offβN=4.5-5.5

250App 520App
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NSTX Zhu – ITPA Feb 06

Attention placed on studying non-resonant rotation 
damping physics

Non-resonant
Global profile 
control by 
pulsing the 
applied field

Resonant
Local JxB
torque can 
explain 
damping by 
tearing modes
Outward 
momentum 
transfer across 
rational 
surface
Leads to rigid 
rotor core
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NSTX Zhu – ITPA Feb 06

Neoclassical toroidal viscosity (NTV) theory tested 
as non-resonant damping mechanism

2
NTVJ BR T T

t
φρ ×

∂Ω⎛ ⎞
− = +⎜ ⎟∂⎝ ⎠

r rTorque balance:

ii22
3 tv Rqν

νπ
=C1 1.365psµ =

( )221 2
12 0

2
, 0 1

1

i

nm
ps r mi

NTV NTV
n mt t ps

n bpT R q T
v B m nqν

µπ ε
µ

=

≠

⎡ ⎤
⎢ ⎥= ⋅ Ω +
⎢ ⎥+ −
⎣ ⎦

∑K
C

(Set = 0 here - tearing modes avoided.) 

Damping caused by
kinked field 

K.C. Shaing, Phys. Fluids 29 (1986) 521.; E. Lazzaro Phys. Plasmas 9 (2002) 3906.
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NSTX Zhu – ITPA Feb 06
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NSTX Zhu – ITPA Feb 06

RFA enhances, broadens rotation damping
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NSTX Zhu – ITPA Feb 06

RWM eigenfuction can explain broader damping
RWM mode decomposition

m = 1 m = 2 3 4 5 6
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NSTX ACS - APS DPP ‘05

High Toroidal Rotation Across Entire Profile
Allows Sustained High βN

• Entire rotation profile stays high
during high-β period
 Alfven speed normalization & q

dependence from drift-kinetic theory

• Trend observed in numerous
discharges

116318
(highlighted time)
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NSTX ACS - APS DPP ‘05

Rotation on Higher Order Rational Surfaces Not
Required for RWM Stabilization

• Plasma remains RWM stable with near zero rotation outside q = 3
 Stable with near zero rotation outside ψN = 0.62

 growth coincides with low rotation inside of q = 2
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NSTX S. A. Sabbagh

XP615: Active Stabilization of the Resistive Wall Mode 
at Low Aspect Ratio

Goals (Part I):
Operate new RWM feedback system on 0.9–1.0 MA DND target
• All aspects of RWM control system / RWM sensors worked well.
• Good target plasmas with wide n=1 free window; high βN up to 6.
• Both locked/rotating RFA/RWM were observed/tracked by feedback.

Vary RWM feedback phase/gain to show control system influence
• Ip = 1.0 MA target showed “best” phase <~ 270o

• Ip = 0.9 MA target more conclusive / finer scan; best phase = 225o

• “Best” phase depends on whether mode is rotating or not

Reduce plasma rotation with n = 3 braking to excite RWM if needed
• RFA observed / RWM excited without braking in most cases
• Ip = 0.9 MA target with phase = 250o, 225o required braking to excite mode



NSTX S. A. Sabbagh

Setting RWM feedback relative phase in the range ~ 250o

superior for longer pulse, higher βN vs. ~ 0o

Phase scan
Varied through 
360o, finer 
scan in 270o

range; 225o

appears to be 
“best”
n = 3 braking 
required to 
generate RWM 
when phase 
set to most 
favorable 
settings

Feedback
on

δB
p(
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 (T
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β collapse
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NSTX Experiment Summary

•Found non-static error field from OH×TF interaction
– Data suggests m=0 EF component dominates
– Similar to Lazzaro’s observations on JET w/ NTV model?

• Increased discharge duration using EFC at high-βN
– Attempting Dynamic EF Correction (DEFC, i.e. feedback)
– Will compare “predictive” EFC to DEFC

•NTV theory consistent with observed flow damping 
from RFA and RWM

•First systematic attempts at RWM feedback using 
low-rotation target starting today



Desired code capabilities – a partial list

• Error field correction:  
– Rely on rotational stabilization of RWM to access β above NW limit 
– Requires minimization of flow damping
– Need to know plasma response to EF and torque from 3D fields

• Need self-consistent “free-boundary” plasma response to non-
axisymmetric fields – above and below no-wall limit
– VMEC – useful below no-wall limit

• How do plasma boundary and internal field respond to shifted/tilted TF?
– Extend NMA code (DCON + VACUUM) to include coil + plasma 

eigenfunctions including ideal wall response (Chance/Chu)
• Need plasma response above no-wall limit - wall stabilization from rotation

– Need internal B-field structure for flow-damping from non-resonant NTV 
and resonant JxB torque from islands
• Have DCON B-norm already for NTV (Zhu, Sabbagh)
• Working on other B-components + singular currents from DCON (J.K. Park)

– MARS-F – has 3D fields/coils, rotation, resistive wall, etc.
• Working on benchmarking field calculations against DCON (me + JK Park)
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