

NSTX error field results (and needed modeling capabilities)

J. Menard MHD SFG Meeting

April 19, 2006 PPPL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAERI Hebrew U loffe Inst **RRC Kurchatov** Inst TRINITI KBSI KAIST ENEA, Frascati CEA. Cadarache IPP, Jülich IPP, Garching ASCR. Czech Rep **U** Quebec

College W&M Colorado Sch Mines Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester **U** Washington **U Wisconsin**

6 non-axisymmetric RWM/EF coils and 3 switching power amplifiers (SPA) used in experiments

6 ex-vessel midplane control coils + 24 B_R and 24 B_P in-vessel sensors

NSTX RWM/EF coil and SPA capabilities:

- 3 opposing coil pairs in anti-series (n=1, 3)
 - n=2 interconnection also possible
- 3 independent SPA circuits 3.3kA, 7.5kHz
- Can produce 10-15G n=1 resonant B_{\perp} at q=2
- EF correction, magnetic braking, feedback

Error-field inferred from high- β experiments has direction <u>opposite</u> to that obtained at low n & β

Inferred 2/1 EF at Low-β Inferred 3/1 EF at High-β Shot duration VS Applied field B3/1 on q=3 0.30 P q=2 q=3 $n_e = 4 \times 10^{19} m^{-3}$ $n_{e}=4x10^{18}m^{-3}$ 0.20 β**"~** β**"~0.4** \diamond Applied B_Y (Gauss) $B_{B_1} = 0.18G$ Applied By(G) 0.10 = 320° Inferred rror field 0.00 \diamond B₂₁ = 1.3G $\phi_{\text{EF}} = 140^{\circ}$ -2 -0.10F \Diamond -4 -0.20 -2 -0.2 0.2 -0.3 -0.1 -0.0 0.1 -4 0 2 Applied B_x (Gauss) Applied Bx(G)

 \Rightarrow additional EF source is present, or EF is not static

TF flag-joint resistance measurements imply interaction between OH transformer and TF coil \Rightarrow TF motion

Accumulated data strongly suggests OH/TF interaction causes TF motion which creates a time-dependent error field that varies throughout shot even when all other plasma parameters and coil currents are fixed Accurate modeling of n=1 B_R error field from OH×TF requires inclusion of time lag and polarity dependence

- Have developed TF model allowing <u>both shift and tilt</u> 4 degrees of freedom
- Filter time-constant of approx. 100ms needed to capture time lags (inertia?)
- Prediction of EF at sensor → prediction of EF in plasma

Locked-mode experiments indicate m=0 EF component may dominate rotation damping & locking

Assuming I have all the signs correct...

- m=1, 2 components <u>larger</u> in shot with later locking
- But, m=0 is reduced in shot with later locking
- NOTE: external EF is ramped linearly beginning at 140ms

High-beta experiments <u>also</u> indicate m=0 EF component may dominate rotation damping & locking

- NOTE: external EF reaches flat-top at 500ms
- m=1, 2 components are again *larger* in shot with later locking
- m=0 is again reduced in shot with later locking

Low and high-beta data can be used to compute empirical scaling for locking disruption threshold Empirical threshold: $\sqrt{B^2}_{m=0}$ + 0.22×B²_{m=2} < 2.1 Gauss Addition of m=1 component changes m=0+2 fit very little Good fit with only m=0 and m=2 components: ± 12% variation Poor fit if only m=0 component is included: ± 38% variation 2.5 Low β + High β 2.0 Field 1.5 [Gauss] 1.0 0.5

117571

117577

0.0

116132

116131

XP614: Comparison of EFC techniques at high β_N – Menard

Applying EFC sustains plasma rotation and can increase β (119609 no EFC - dashed, 119621 w/ EFC - solid)

- Scan of EFC amplitude finds that optimal proportionality value (119649) results in higher rotation and beta than shot with non-optimal value (119645 - dashed)

Rotation responds strongly to only 20% variation in EFC amplitude

Applying EFC keeps rotation high at location of q=2,3 surfaces

No EFC

With EFC

High β_N phase is longer in recent 750kA long-pulse shots using EFC, but rotation is lower late in shot...

XP618: Optimize error field correction vs. rotation – LaHaye, Strait

- Observe rotation modulation at 2nd harmonic of applied field
- Little to no rotation modulation observed below no-wall limit

S.A. Sabbagh¹, A.C. Sontag¹, W. Zhu¹, M.G. Bell², R. E. Bell², J. Bialek¹, D.A. Gates², A. H. Glasser³, B.P. LeBlanc², F. Levinton⁴, J.E. Menard², H. Yu⁴, D. Battaglia⁵, and the NSTX Research Team

¹Department of Applied Physics, Columbia University, New York, NY ²Plasma Physics Laboratory, Princeton University, Princeton, NJ

Physics Laboratory, Princeton University, Princeton, NJ ³Los Alamos National Laboratory, Los Alamos, NM ⁴Nova Photonics, Inc., Princeton, NJ ⁵University of Wisconsin, Madison, WI

US/Japan Workshop on MHD February 8, 2006 Naka, Japan

Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL **PSI** SNL **UC Davis UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kvushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP. Jülich** IPP, Garching U Quebec

Attention placed on studying non-resonant rotation damping physics

Neoclassical toroidal viscosity (NTV) theory tested as non-resonant damping mechanism

Applied field alone yields moderate, global rotation

damping

n=3

n=9

n=15

1.5

RFA enhances, broadens rotation damping

□ n = 1 DC field (800A)

- n=5 torque larger than n=1 torque (n²b² scaling)
- n=1-15 components included
- Broadening damping profile

RWM eigenfuction can explain broader damping

DCON n = 1 (m = -12 to 26) RWM calculated eigenfunction

- No-wall boundary condition
- Need to evaluate with-wall boundary condition; inclusion of measured n = 2 component

$\frac{\text{High Toroidal Rotation Across Entire Profile}}{\text{Allows Sustained High } \beta_{N}}$

Rotation on Higher Order Rational Surfaces Not Required for RWM Stabilization

- Plasma remains RWM stable with near zero rotation outside q = 3
 - Stable with near zero rotation outside $\psi_N = 0.62$
 - **growth coincides with low rotation inside of q = 2**

XP615: Active Stabilization of the Resistive Wall Mode at Low Aspect Ratio

Goals (Part I):

- Operate new RWM feedback system on 0.9–1.0 MA DND target
 - All aspects of RWM control system / RWM sensors worked well.
 - Good target plasmas with wide n=1 free window; high β_N up to 6.
 - Both locked/rotating RFA/RWM were observed/tracked by feedback.
- Vary RWM feedback phase/gain to show control system influence
 - $I_p = 1.0$ MA target showed "best" phase <~ 270°
 - $I_p = 0.9$ MA target more conclusive / finer scan; best phase = 225°
 - "Best" phase depends on whether mode is rotating or not
- **\Box** Reduce plasma rotation with n = 3 braking to excite RWM if needed
 - RFA observed / RWM excited without braking in most cases
 - $I_p = 0.9$ MA target with phase = 250°, 225° required braking to excite mode

S. A. Sabbagh

<u>Setting RWM feedback relative phase in the range ~ 250°</u> superior for longer pulse, higher β_N vs. ~ 0°

Phase scan

- Varied through 360°, finer scan in 270° range; 225° appears to be "best"
- n = 3 braking required to generate RWM when phase set to most favorable settings

S. A. Sabbadh

NSTX Experiment Summary

• Found non-static error field from OH×TF interaction

- Data suggests m=0 EF component dominates
- Similar to Lazzaro's observations on JET w/ NTV model?
- Increased discharge duration using EFC at high- β_N
 - Attempting Dynamic EF Correction (DEFC, i.e. feedback)
 - Will compare "predictive" EFC to DEFC
- •NTV theory consistent with observed flow damping from RFA and RWM
- First systematic attempts at RWM feedback using low-rotation target starting today

Desired code capabilities – a partial list

- Error field correction:
 - Rely on rotational stabilization of RWM to access β above NW limit
 - Requires minimization of flow damping
 - Need to know plasma response to EF and torque from 3D fields
- Need self-consistent "free-boundary" plasma response to nonaxisymmetric fields – above and below no-wall limit
 - VMEC useful below no-wall limit
 - How do plasma boundary and internal field respond to shifted/tilted TF?
 - Extend NMA code (DCON + VACUUM) to include coil + plasma eigenfunctions including ideal wall response (Chance/Chu)
 - Need plasma response above no-wall limit wall stabilization from rotation
 - Need internal B-field structure for flow-damping from non-resonant NTV and resonant JxB torque from islands
 - Have DCON B-norm already for NTV (Zhu, Sabbagh)
 - Working on other B-components + singular currents from DCON (J.K. Park)
 - MARS-F has 3D fields/coils, rotation, resistive wall, etc.
 - Working on benchmarking field calculations against DCON (me + JK Park)