Ming-Morrell Code Application to RWM feedback in DIIID

- DIIID:balanced NBI ready
 - Vitually zero rotational stablization
 - + zero torque input at high beta possible
 - + shot scenario under preparation by TRANSP (Bob Budny)

Balanced Beam Injection is Likely to Reduce Substantially the Rotational Stabilization Effect

Approach / Subjects

- Comparison with RWM experiments
 - Vacuum test (documentation): "realistic as possible" -
 - + For adjusting the wall resistivity along poloidal direction in the MM-code
 - Mode structure: mode rigidity in feedback stabilized high beta plasma
 - + ELM event makes the RWM unstable
- Comparison with feedback performance
 - Gain dependence should assess the adequacy of present plasma model
- Feedback optimization
 - Optimization of active coils and sensitivity to higher /lower-m
 - + FRA with residual error field in any device
 - + ELM/RWM simultaneous control: active coil design
 - + inner/outer coils in ITER?
 - Suppression scheme of simultaneous n=1,2,3 RFA suppression

Feedback Suppresses Large Amplitude RWM Buildup and Allows the Plasma to Survive Transient Intervals of Low Rotation

FAR-TECH

• Other Applications

PADE approximation: mode response represented in polynomial form

Liu and Bondeson, PRL 84,907 (2000)

- Convenient for including the complexity of power supply etc.
- Easy to convert to a time dependent calculation
- Recent debate in ITER (even with no plasma rotation), Jim Bialek et al.,
 - Discrepancy between MARS,VALEN,KNIX (and MM-code?)
 + Relative phase between the plasma mode current and the eddy crrent on the double wall during feedback
 + High betan performance

RWM Feedback Voltage Control System with Audio Amplifiers - Hardware and Analysis -

FAR-TECH

