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2004-2005 experiments have elucidated MGI
physics basis, mechanisms and application to ITER

• Directed-jet high intensity gas injector (L = 1.3 m) 
—  10-ms exit flow rise time (argon)
—  Initial Q ∝ t2/trise; hence QMGI ≤ (0.01– 0.5) Qtotal (argon) 

—  Mixed gas: 2% Ar is entrained in faster H2 flow

• BT, Ip, q and/or Wth target plasma variations
— Gas does not penetrate ⇒ surface-localized fueling
— Edge j’-driven MHD ⇒ inward ion transport + outward 
     energy transport and a ‘slow’ erosive thermal collapse; 
     ends with ‘fast’ internal j(r) ‘reconnection’ 
— Surface fueling + Wth-enabled MHD ⇒ ion and electron 
     assimilation proceeds during the TC, but ‘efficiency’ is 
     finite, and ne,total << nRB at the start of CQ



ORNL tests show ~10-ms exit pressure ‘rise time’ (Ar)
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Test data indicates DIII-D MGI gas quantities ≤ 50% Qin
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Fast camera imaging: jet does not penetrate ≥ few cm

• Ar I  images show surface-localized ionization + along-B streaming 

• Ar ion and radiation profiles (from SXR) and plasma li data all
support optical observations of only minimal neutral penetration

• No increase in penetration for BT = 0.5 T, Wth ≈ 0 or  CQ plasma

• No difference in penetration with high-intensity vs. open-valve jet



Jet and target plasma variations have little effect

BT and Wth variations 
do not affect penetration

?? ??



Gas surface fueling + MHD ‘mixing’ effect a ‘slow’ progressive 
radiative dissipation of Wth that is followed by a ‘fast’ CQ

• Gas reaches plasma edge

• Ar ionization, dilution, and Ar+ radiation 
   cooling produce edge j(r) ‘scrape-off’ 
   and high edge dj/dr

• m = 2 destabilized; Ar+ and j’ fronts 
   propagate inward; m = 2 grows

• m = 1 destabilized; Ar+ and j’ fronts 
   continue to propagate inward;
   central Wth starts to be transported 
   outward to radiating Ar+ region

• Core Wth radiation complete ~5 ms 
   after ‘first gas’; fast internal (q ≤ 2) 
   current spreading follows

• Fast (5-ms) current quench consistent 
   with cold (≤ 5 eV), impurity-radiation
   dominated plasma, hence low Ihalo, TPF
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Magnetic, profile and MHD data elucidate the progressive
nature and mechanisms of MGI ‘thermal collapse’
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Magnetic, profile and MHD data elucidate the progressive
nature and mechanisms of MGI ‘thermal collapse’
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Thermal collapse duration and CQ-start gas and electron
assimilation increase with initial plasma thermal energy
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Directed-Jet “Wth-variation” experiments have elucidated 
gas assimilation and runaway avalanche suppression

• Duration of the thermal collapse phase and the total quantity of neutral Ar 
delivered to the plasma surface up to onset of the CQ both increase with in-
creasing Wth. The observed ∆Ne (increase in plasma electron content) also 
increases with increasing Wth

• The observed ∆Ne, interpreted as being due to singly-ionized Ar, corre-
sponds to a gas assimilation fraction of 10-20%. The observed ‘as-Ar+’ as-
similation fraction increases only weakly with increasing Wth   

• The ‘measured’ added electron content, ∆Ne,tot(as Ar+), corresponds, on a 
0-D basis, to total (free + bound) electron densities that are about 1-10% of 
the corresponding Rosenbluth no-avalanche densities

• The estimated added electron content, ∆Ne,tot(as Ar), assuming 100% assimi-
lation of injected Ar, corresponds, on a 0-D basis, to total electron densities 
that are about 10-30% of the Rosenbluth density

• The lack of major RE generation in the Ar D-J experiments cannot be attrib-
uted to collisional suppression of Coulomb avalanche gain 



Summary and Implications for ITER

• Jet tubes and exit flow rise time limit the initial rate of gas delivery. For the D-J 
system, Ar quantity at CQ onset is ~10% of nominal   

• There is no indication of direct neutral penetration. This observation is consis-
tent with jet stopping by displacement of the B2/2µo magnetic pressure

• Magnetic, ion and Te profile and MHD fluctuation data show edge cooling and 
edge-j’-driven MHD effect an inward transport of ionized impurities and out-
ward transport of core thermal energy. The resulting ‘erosive’ radiative collapse 
proceeds on a ~5-ms time scale  

• MHD instability and gas assimilation as ionized impurities proceeds for as long 
as the plasma thermal energy source, Wth, remains. Higher Wth promotes in-
creased assimilation. But the observed at-CQ assimilations are well below unity

• Lack of major RE generation in the Ar D-J experiments cannot be attributed to 
collisional suppression of avalanche gain. Low levels of well-confined runaways 
are frequently observed, and would likely avalanche in a high-gain plasma 




