

frice of usion nergy ciences

Joint Experiment on ELM Mitigation with Midplane Control Coils

S. A. Sabbagh, T. Evans, D. Gates, R. Maingi, J.E. Menard, J.K. Park, many others...

NSTX MHD SFG Meeting

December 11 2007 Princeton Plasma Physics Laboratory

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU **ORNL** PPPL PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokvo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching U Quebec

Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric coils

Goal

- Demonstration of ELM mitigation with NSTX midplane RWM coil set
- Approach (complementary to other proposed plans)
 - Application of broader n spectrum of DC fields
 - Non-standard coil configs: (i) turn off one coil, (ii) turn off 5 coils, (iii) turn off every other coil, (iv) slow pre-programmed toroidal propagation of setup (iii)
 - New "n = 2" applied field capability for 2008, vary phase
 - Perturbations away from "n = 1" control currents (which have n = 1,5 dominant), superposition of n = 1 – 3, higher n
 - Bonus: Can get NTV rotation braking data piggyback!
 - Application of AC fields
 - Pre-programmed toroidal propagation of several DC setups mentioned above
 - □ Might stimulate ELM to allow to transform large ELMs into smaller (acceptable) ELMs
 - Now examining existing ELM mitigation evidence from past RWM, NTV experiments
 - N = 1 feedback
 - Can best feedback configuration from 2007 alter ELM dynamics?
 - Take best approach above and run in closest ITER shape w/ELMS, no n = 1

Direction of applied n=1 traveling wave alters RWM stability

<u>Unstable RWM avoided with rapidly rotating n = 1</u>

Observed rotation decrease follows NTV theory

(Zhu, et al., PRL 96 (2006) 225002.)

- Further test NTV theory; compare to other devices
 - Trapped particle effects, 3-D field spectrum important for quantitative agreement
 - Scales as $\delta B^2(p_i/v_i)(1/A)^{1.5}$
 - Low collisionality, v_i, ITER plasmas expected to have higher rotation damping
 - Saturation of 1/v_i scaling expected by theory, can it be found?

Approach

- □ Use n = 2 field to slow ω_{ϕ} , compare to other devices
- Vary collisionality (as in past XPs) to produce ~ at least a factor of 2 variation in NSTX

Request 1 run day (<u>separate</u> 2008 NSTX XP proposal