NSTX Team Meeting - Physics Analysis

September 25, 2003

C.K. Phillips and S. Kaye

Transport Studies

- GTC-Neo Code/ W. Wang
 - detailed particle orbits have been included in this global δf particle-in-cell gyro-kinetic code
 - can now be used to calculate neoclassical transport, bootstrap currents and E_{radial} in NSTX plasmas.
 - Comparisons against more approximate models (e.g., NCLASS, etc) will be made.
 - Initial studies reported this morning by W. Wang at PPPPL Theory Seminar
- Error analysis technique for thermal conductivities / B. LeBlanc
 - A method to determine the error bars on thermal conductivities for a given NSTX discharge from a single TRANSP run is being developed.
 - The method uses TRANSP to determine the volume-integrated conducted power and a detailed stand-alone data analysis tool to determine the error bars on the density and plasma temperatures and their gradients.
 - Some final improvements related to the treatment of the density and temperature gradients are currently being implemented.

HHFW Heating and CD Modeling

- TRANSP & CURRAY Package / (K. Indireshkumar, T.K. Mau and B. LeBlanc):
 - integrated package is now available in the TRANSP "pshare" area
 - HHFW power deposition profiles look reasonable at all time steps in a TRANSP analysis of an NSTX HHFW discharge
 - HHFW CD profiles are currently being integrated into the poloidal field diffusion solver in TRANSP
- AORSA-2D code (E.F. Jaeger / ORNL, C.K. Phillips, R. Dumont / CEA and J. Spaleta / P.U.)
 - Code has been generalized to include fully non-Maxwellian species in the wave field calculations
 - Capability to run the code from PPPL is being implemented (requires rebuilding the PLPLOT graphics package on the PPPL cluster)
 - Work currently supported by RF SciDAC project

Equilibrium Studies

- FLOW code L. Guazzotto, J. Manickam, S. Kaye
 - Code now runs reliably with equilibrium profiles imported from TRANSP
 - Analysis of NSTX discharges is now underway
 - Simulations of profile asymmetries in the density and temperature will be compared against experimental data

NSTX Equilibrium Reconstruction Upgrades

- NSTX EFIT and PHOENIX upgrades (S. Sabbagh):
 - Improvements include:
 - toroidal rotation, flux iso-surface, and pitch angle constraints
 - using CHERS Ti, dynamic pressure, Thomson iso-Te surfaces
 - » rotation and iso-Te surfaces yield a self-consistent solution
 - » use of iso-Te surfaces should reduce q profile error
 - » CHERS Ti reduces error bar on pressure profile input
 - pitch angle input in preparation for MSE data
 - » Pitch angle computations presently read from EFIT01, or 02
 - Optionally include TRANSP pressure profile
 - Double the # of measured constraints relative to existing analysis
 - PHOENIX upgraded to provide this analysis between-shots
 - Status:
 - New NSTX EFIT executable built
 - PHOENIX upgrades now writing input data files initial runs to occur this week