Programmatic directions for 2006; we solicit team members' input and opportunities of discussion

- Analyze, publish, and present results from the 2005 run.
- Collaborate on C-Mod, DIII-D, MAST, JET.
 - a) ITPA relevant experiments
 - b) MAST experiments, with EBW, divertor, ELMs, etc.
- Provide some diagnostics, which can be effectively moved (cameras, spectrometers) to augment offsite collaborations.
- Enhance utilization of remote experimental participation.
- Participate in ITER Physics Tasks starting this year.
- Prepare for 2007 run, including Research Forum, etc.
- Identify a few viable research milestones for 2006, which benefit from 2005 run and support key milestones in 2007.

Be ready for possible run in 2006.

NSTX Team Mtg. 2/11/05

FY05-07 milestones can take full advantage of the strong NSTX Research Team, assuming no run in '06

		FY05	FY06	FY07	FY09
Exp. Run-Weeks:		17	0*	12*	
1) Transport	& Turbulen	ce: Physical proc	esses that govern heat, particle & m	omentum confinement	
Characterize q' & ∇T _e effects				Measure high-k turbulence	
on electron transport		nsport			
2) Macroscop	ic Stability	: Role of magnetic	st <mark>ructure on plasma pressure & bo</mark>	o <mark>otstrap current</mark>	
Study rotating plasmas close		plasmas close	Compare EF/RWM data with	Characterize effectiveness of	
to "wall-stability" with EF		y" with EF	theoretical models of stability	closed-loop EF control	
correction			conditions		
3) Wave-Parti	icle Interact	ion: Use of electr	omagnetic waves to sustain and co	ntrol high-temperature plasmas	
-		of supra-Alfvénio		Understand & optimize	
ion	driven insta	abilities on core J	data with non-linear simulation		
4) Start-up, R	amp-up and	d Sustainment: Pl	ysical processes of magnetic flux	generation	
			-	Assess CHI creation of	
				closed magnetic flux	
5) Boundary	Physics: In	terface between fo	ısion plasmas and normal temperat	ure surroundings	
Characterize pedestal and					
SOL of low-A, H-mode,					
high P/R plasmas					
6) Integration	: Integratio	n of external cont	rol and self-organization physics		
Characterize high-B/S &		Benchmark time-dependent			
low- V_L plasmas for > τ_{skin}		s for $> \tau_{\rm skin}$	scenario simulation with	*OFES Guida	nce
		J	high-B/S & low V _L data		
			<u> </u>	Advanced P	
	Work	together to str	engthen these 💾	Control Decision	Point

NSTX Team Mtg. 2/11/05

Program Direction