

Aqua-pour Implications for NSTX-U Operations and Research Goals

Columbia U CompX General Atomics FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Illinois U Maryland U Rochester U Washington U Wisconsin

Masa Ono and Jon Menard

for the NSTX-U Team

NSTX-U Team Meeting August 15, 2014

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Tsukuba U Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI NFRI KAIST POSTECH SNU ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

Office of

Science

NSTX-U **NSTX-U Team Meeting August 15, 2014**

• **Operational Implications (M. Ono)**

• **Research Program Implications (J. Menard)**

OH Aquapour Removal Activity

Removal of Aquapour-epoxy mix in tight space proved to be highly challenging

100 mill Aquapour gap

- **During VPI CTD-425 epoxy was cured at ~ 170**°**C in oven**
- **Epoxy "barriers" were teflon sheets over aquapour and RTV silicon applied at the both ends.**
- **However during VPI, epoxy saturated the aquapour turning it into waster resistant substance.**
- •**~ two week of removal activities with various tools and methods only resulted in ~ 3" of removal.**
- **At the present time, there is no solution for removing the remaining aquapour- epoxy mixed material.**
- **TF/OH bundle was baked at 100** °**C in the oven overnight and it is being readied for electrical tests before being assembled.**

Schematics of OH-TF bundle configuration

100 mill gap between OH and TF to provide free OH-TF operation

Strategy for Achieving Full NSTX-U Parameters

After CD-4, the plasma operation could quickly access new ST regimes

1st year goal: operating points with forces up to $\frac{1}{2}$ the way between NSTX and NSTX-U, ½ the design-point heating of any PF/TF coil (~75% for OH) Will permit up to \sim 5 second operation at B_T \sim 0.65

2nd year goal: Full field and current, but still limiting the PF/TF coil heating Will revisit year 2 parameters once year 1 data has been accumulated

3rd year goal: Full capability

This scenario most likely to be affected

1st and 2nd year goals not affected materially (see Jon's slides).

2 MA, 1 T, Partial Inductive (Later Years, 80 kV beams) (Favorable Profiles and H~1.05, 142301)

• **If we do nothing, allowed temperature limit reached at t = 3 s.**

• **10% pre-heat and 7**°**C TF pre-cooling case allows 5 s at 1 T and 2 MA.**

NSTX-U **NSTX-U Team Meeting August 15, 2014**

Stress Analyses for 2 MA, 1 T, Partial Inductive Case Warmer OH and cooler TF help reduce peak tension

OH Solenoid Thermal Growth Sensors Implemented FOD sensors will monitor OH solenoid growth in real time

Two Fiber Optic Displacement (FOD) sensors to be installed at 180° apart.

The fixtures can be installed now and the sensors will be installed after the center stack is installed.

E-DC1887, C-DC1888 and E-DC1889

Possible Future Engineering Improvements Which could increase operational and physics flexibility

- **1. Through engineering test specimens, it may be shown that the stress concerns may be greatly reduced or entirely eliminated.**
- **2. Raise the OH operational allowable temperature limit to 110 ^ᵒ C from the present 100 ^ᵒ C**
- **3. Consider pre-cooling TF by ~5 ^ᵒ C from present 12 ^ᵒ C to 7 ^ᵒ C.**
- **4. Consider pre-heating the OH coil by increasing the OH cooling water temperature**
- **5. Delay OH cooling during the initial OH-TF cool- down period to insure the TF coil cools down sufficiently.**

It should be noted that if potential solutions 1 and/or 2 above are proven to be feasible, then the need for the further engineering system implementation indicated in 3 - 5 would be greatly reduced or eliminated entirely.

J(r) equilibration varies most strongly with n/n_{Greenwald} and H₉₈ and weakly with I_P, flux consumption depends on flat-top I_P

CO NSTX-U August 15, 2014

Physics requirement to achieve J profile equilibration at I_p **= 2MA should be feasible for broad range of** τ_F **, n_e**

OH flux fraction < $0.7 \rightarrow I_{OH} > -10kA$ for $\Delta t_{flat} = 3\tau_{CR} \rightarrow$ **possible to achieve** T_{TF} **<** T_{OH} **< 100C**

For ITER-like confinement, good density control $(n/n_{Greenwald} \sim 0.5)$ facilitates 2MA, 5s flat-tops with $T_{OH} \geq T_{TF}$

> $H_{98} = 1.05$ $f_{\text{Greenwald}} = 0.6$ $P_{NBI} = 8MW, \beta_N = 3.8$

 $H_{98} = 1.05$ $f_{\text{Greenwald}} = 0.5$ $P_{NB1} = 8MW, \beta_N = 3.7$

Higher confinement enables 2MA, 5s flat-tops with $T_{OH} \geq T_{TF}$ even with higher density

CO NSTX-U August 15, 2014

Summary – Research Impact

- With a high degree of confidence, we believe we can meet all of the physics objectives in the machine with the Aquament filling the TF-OH gap
- Research milestones for FY2015-16 unchanged
- More shot pre-planning and development needed to get maximum plasma pulse length at full current
	- Planned improvements in stored energy / β_N control, and implementation of line-average density control (likely requiring cryopump) will greatly aid shot reproducibility, scenario development
- Can readily meet each of the PEP parameters individually
	- Combination of parameters (2MA, 1T, 5s) may require additional engineering systems (initial ∆T for OH and TF) and administrative controls (operational procedures), DCPS modifications
- Planning to get a 10C T initial differential between the OH and TF with TF initially colder. Evaluating details of impact.

Discussion of options and risks/benefits

- 1. Continue as is (our recommended option)
	- No down-side for first 2 years of operations
	- Performance acceptable for physics goals and for year ≥ 3
	- Narrower operating windows for 2MA, 5s operations
		- Improved density/confinement control can likely mitigate this
		- Higher τ_F scenarios beneficial (also needed for FNSF!)
- 2. Keep trying to remove the Aquament (mostly risks)
	- More delays to first plasma, research operations
	- No guarantee can be removed in near future
	- Potential for causing damage to the coils
- 3. Remove the OH and try again (mostly risks)
	- Tremendous delays in schedule and cost impact
	- No guarantee of an alternative method succeeding (R&D)
- Continuing with Assembly; expect first plasma before the end of February
- Start-up in Feb would allow between 12-16 run weeks
- Additional engineered systems and administrative controls not needed for CD-4 or first 1-2 of yrs of ops
	- Evaluating best method for T differential control. As part of that, exploring ways to control humidity in the test cell.
- Will continue to evaluate options in the longer-term for removing the Aquament

