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NSTX Mission Elements

• Understand unique physics properties of ST
– Assess impact of low A, high β, high vfast / vA

on toroidal plasma science

• Complement tokamak physics, support ITER 
– Exploit unique ST features to improve 

tokamak understanding
– Benefit from tokamak R&D

• Establish attractive ST operating conditions
– Understand and utilize ST for addressing 

key gaps between ITER and DEMO
– Advance ST as fusion energy source ST-FNSF/CTFNHTX

ITER

NSTX

Pre-conceptual designs

ARIES-ST
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NSTX Research Priorities:

• Full non-inductive current sustainment (i.e. without central solenoid)
– ST/tokamak requires full non-inductive current drive for steady-state
– Neutral beam current drive may be strongly influenced by Alfvénic instabilities in ST

• Electron and ion transport in high-confinement regimes
– Need predictive capability to confidently extrapolate to next-steps
– Electron energy transport increases in operating regimes of ST (i.e. high β, ρ*, ν*)

• Non-inductive start-up and ramp-up
– Essential for ST applications without solenoid: CTF, DEMO

• “Taming the plasma-material interface (PMI)”
– Solutions for very high particle/heat/neutron flux needed for CTF and DEMO

• High β, MHD control near stability limits, disruption physics
– Higher β would accelerate component testing in CTF, essential for DEMO
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NSTX is providing unique contributions to all magnetic
fusion research needs – for the ITER era and beyond

High heat flux at small size and cost for PMI R&D

Future: high neutron flux at small size and  
cost for fusion nuclear science applications

Multi-mode AE fast-ion 
transport expected in 

burning plasma regime

Unique physics: low A, high β,
high vfast / vA at low ν*

Theme structure of OFES 
Research Needs Workshop 

(ReNeW) – June 2009

Simplified, maintainable, 
affordable magnets for DEMO

High non-inductive fraction and 
β to expand knowledge-base for 

sustained high-performance

With LTX, leading study 
of liquid Li as PFC, and 
impact on core plasma
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The ST offers attractive near-term applications for 
fusion development complementary to ITER

Plasma-Material 
Interface R&D +

Advanced Physics

Fusion Nuclear 
Component Testing

ST characteristics: Implications:

Near-term ST
Applications:

• High normalized pressure
• Compact geometry
• Simplified magnets

• High heat flux at 
small size and 
reduced cost 

• Simplified 
construction, 
access, and 
maintenance

• High neutron flux 
at small size and 
reduced cost, 
reduced tritium 
consumption

Longer term:  ST Power Plant offers simplest magnets, easiest maintenance
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ST is attractive configuration for 
“Taming the plasma-material interface”

• FESAC-PP identified PMI issue as highest priority:   “…solutions needed for 
DEMO not in hand, …require major extrapolation and substantial development”

• PMI research and integration goals:
– Create/study DEMO-relevant heat-fluxes
– Perform rapid testing of new PMI concepts

• Liquid metals, X-divertor, Super-X divertor
– PMI research at DEMO-relevant Twall ∼ 600°C
– Plasma-wall equilibration: τpulse = 200-1000s
– Develop methods to avoid T retention
– Demonstrate compatibility of PMI solutions     

with high plasma performance:
• High confinement without ELMs
• High beta without disruptions
• Steady-state, fully non-inductive

– Study high βN, fBS for ST-DEMO and ST-CTF
– Test start-up/ramp-up for ST-CTF and ST-DEMO

Scientific mission of National High-power advanced Torus eXperiment (NHTX):
“Integration of a fusion-relevant plasma-material interface 
with stable sustained high-performance plasma operation”

Pheat 50MW
R0 1m
A 1.8-2
κ ≤ 3
BT 2T
IP 3-3.5MA
βN 4.5
βT 14%
ne/nGW 0.4-0.5
fBS º 70%
fNICD 100%
H98Y,2 ≤ 1.3
ENB 110keV
P/R 50MW/m
Solenoid ½ swing to full IP

National High-power advanced 
Torus eXperiment (NHTX)

Baseline operating scenario:
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ST-based Component Test Facility (ST-CTF) is attractive concept for 
“Harnessing Fusion Power”

• ST advantages for CTF:
– Compact device, high β

• Reduced device cost
• Reduced operating cost (Pelectric)
• Reduced T consumption 

– Simplified vessel and magnets
• Fully modularized core components
• Fully remote assembly/disassembly

P/R [MW/m] 14        38      61

Solenoid Iron core or MIC 
solenoid for startup

ST-based Component Test Facility (ST-CTF)

• ST-CTF Required Conditions: From M. Peng APS-2007, based on 
NCT presentation to FESAC 8/7/2007
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FESAC Toroidal Alternates Panel (TAP) recently prioritized 
issues and gaps for the Spherical Torus (ST) for the ITER era

“Tier 1” issues and key questions from TAP, and NSTX goals:
1. Startup and Ramp-Up: Is it possible to start-up and ramp-up the plasma current to 

multi-MA levels using non-inductive current drive w/ minimal or no central solenoid?
– NSTX goal:  demonstrate non-inductive ramp-up and sustainment

2. First-Wall Heat Flux: What strategies can be employed for handling normal and off 
normal heat flux consistent with core and scrape-off-layer operating conditions?
– NSTX goal:  assess high flux expansion, detached divertors, liquid metals

3. Electron Transport: What governs electron transport at low-A & low collisionality?
– NSTX goal:  determine modes responsible for electron turbulent transport and 

assess the importance of electromagnetic (high β) and collisional effects 

4. Magnets: Can we develop reliable center-post magnets and current feeds to 
operate reliably under substantial fluence of fusion neutrons?
– NSTX goal:  develop and utilize higher performance toroidal field magnet

ST ITERST ITER--era goal:era goal: “Establish the ST knowledge base to be ready to construct 
a low aspect-ratio fusion component testing facility …. to inform the design 
of a demonstration fusion power plant”
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Performance gaps between present and next-step STs
motivate near-term research prioritization and upgrades

For NHTX, ST-CTF:  reduce: ne & ν*e, increase: NBI-CD, confinement, start-up/ramp-up
For ARIES-ST:          increase: elongation, βN, fBS, confinement, start-up/ramp-up

Present high βN and fNICD NSTX Upgraded NSTX NHTX ST-CTF ARIES-ST
A 1.53 1.65 1.8 1.5 1.6
κ 2.6-2.7 2.6-2.8 2.8 3.1 3.7
βT [%] 14 10-16 12-16 18-28 50
βN [%-mT/MA] 5.7 5.1-6.2 4.5-5 4-6 7.5
li(1) 0.5-0.65 0.55-0.75 0.5-0.7 0.25-0.5 0.24
fNICD 0.65 1.0 1.0 1.0 1.0
fBS+PS+Diam 0.54 0.6-0.8 0.65-0.75 0.45-0.5 0.99
fNBI-CD 0.11 0.2-0.4 0.25-0.35 0.5-0.55 0.01
fGreenwald 0.8-1.0 0.6-0.8 0.4-0.5 0.25-0.3 0.8
ν*e 0.15 0.04 0.01 0.002 0.007
H98y2 1.1 1.15-1.25 1.3 1.5 1.3

Dimensional/Device Parameters:
Solenoid Capability Ramp+flat-top Ramp+flat-top Ramp to full IP No/partial No 
IP [MA] 0.72 1.0 3-3.5 8-10 28
BT [T] 0.52 0.75-1.0 2.0 2.5 2.1
R0 [m] 0.86 0.92 1.0 1.2 3.2
a [m] 0.56 0.56 0.55 0.8 2.0
IP / aBT0 [MA/mT] 2.5 1.8-2.4 2.7-3.2 4-5 6.7

Near-term highest priority is to assess NHTX ST-CTF scenarios

Gaps to next-step STs: 
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Access to reduced collisionality is needed to understand  
underlying causes of ST transport, scaling to next-steps

• Future ST’s are projected to operate at      
10-100ä lower normalized collisionality ν*

• Conventional tokamaks observe weak 
inverse dependence of confinement on ν*

• NSTX observes much stronger scaling vs. ν*
– Does favorable scaling extend to lower ν* ?
– What modes dominate e-transport in ST ?

• Electrostatic or electromagnetic?
Normalized electron collisionality νe* ∝ ne / Te

2

ITER BτE (e-static g-Bohm) ∝ ρ*
-3 β0 ν*

-0.14 q-1.7
Petty et al., PoP, Vol. 11 (2004)

• Higher toroidal field & plasma current enable access to higher temperature

• Higher temperature reduces collisionality, but increases equilibration time

• Proposed upgrade: Double field and current + 3-5ä increase in pulse 
duration to substantially narrow capability gap

ITER-like 
scaling

ST-CTF 

?

constant 
q, β, ρ∗

NSTX Upgrade
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Increased auxiliary heating and current drive are needed to 
fully exploit increased field, current, and pulse duration 

•Higher heating power to access high temperature and β at low collisionality
– Need additional 4-10MW, depending on confinement scaling

•Increased external current drive to access and study 100% non-inductive
– Need 0.25-0.5MA compatible with conditions of ramp-up and sustained plasmas

•Proposed upgrade: double neutral beam power + more tangential injection
– More tangential injection up to 2 times higher efficiency, current profile control 
– ITER-level high-heat-flux plasma boundary physics capabilities & challenges

• q(r) profile very important for 
global stability, electron transport, 
Alfvénic instability behavior
– Variation of mix of NBI tangency 

radii would enable core q control

Use 4 of 6 sources
ENBI=90keV, PINJ = 8MW
fGW=0.95

Normalized minor radius

RTAN [cm]__________________ 

50,  60, 70, 130
60,  70,120,130
70,110,120,130IP = 725kA, BT=0.55T,  βN = 6.2, βT = 14%

H98y2 = 1.2, fNICD = 100%, f∇p = 73%
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Major facility upgrades are proposed to bridge performance 
and understanding gaps between present and next-step STs

Magnet operation at ~1T (vs. 0.55T) 
within a factor of 2 of next-step STs

Present NBI
RTAN =

50,60,70cm

2nd NBI
RTAN =

110,120,130cm  

2nd NBI with larger Rtangency for sustained and 
controllable 100% NICD + high β at low ν*

Present CS

New center stack for 1T, 2MA, 5s to access 
reduced ν*, 100% non-inductive ST plasmas

New CS
R0 /a = 1.25-1.3 1.5-1.6

0.2

0.4

0.6

0.8

1.0

BT 
[Tesla]

τPulse (sec)

1 MA

0.75 MA

Present CS

IP=1.4 MANew 
CS

IP ≤ 2 MA

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

2nd NBIPresent NBI

NBI current drive profiles [MA/m2]

Normalized minor radius

Up to 2 times higher NBI current drive efficiency, 
current ramp-up with NBI, current profile control 
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Non-inductive ramp-up to ~0.4MA possible with RF + new CS, 
ramp-up to ~1MA possible with new CS + more tangential 2nd NBI

• High field ≥ 0.5T needed for efficient RF heating
• ~2s duration needed for ramp-up equilibration
• Higher field 0.5 1T projected to increase electron 

temperature and bootstrap current fraction 

Ramp to ~0.4MA with fast wave heating:                     Extend ramp to 0.8-1MA with 2nd NBI:

• Benefits of more tangential injection:
• Increased NBI absorption = 40 80% at low IP
• Current drive efficiency increases:  ä1.5-2

• New CS needed for ~3-5s for ramp-up equilibration
• Higher field 0.5 1T also projected to increase electron 

temperature and NBI-CD efficiency

Time (s)

Present NBI
More tangential 

2nd NBI

TSC Simulations – C. Kessel
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Additional PF coils of new CS would provide 
flexibility to control flux-expansion for heat flux control

Magnetic geometry strongly 
influences peak heat flux

Partial divertor detachment 
(PDD) reduces peak heat flux

Present NSTX: NSTX with new CS:

New divertor poloidal field coils on new CS would 
extend present high flux expansion ~20 to 40-60

LLD-I 
80° SEGMENT

Upgraded NSTX would test compatibility of high flux 
expansion, PDD, a liquid lithium divertor (LLD), and up to 
5â longer pulse-length and 2-3â higher divertor heat flux

Upgraded LLD, capillary 
porous system, other?

Additional
divertor coil
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NSTX Upgrades needed to extend ST confinement scaling 
studies to higher field and current and lower collisionality

• NSTX H-mode thermal confinement scaling differs from higher aspect ratio scaling:
τE,NSTX ∝ BT

0.9    Ip0.4  strong BT scaling τE,98y,2 ∝ BT
0.15 Ip0.93 weak BT scaling

New CS with 1T, 2MA operation:
• Increased range of BT, IP variation from 1.6 to nearly a factor of 3
• Does strong confinement dependence on ν* extend to lower ν*?
• Assume τE ∝ BT

1.3 at fixed q, τE ∝ Pheat
-0.5 to -0.7, and ne/ngw ∝ IP-0.5

–Present NBI + 4MW RF, access ∼ 0.75-0.9ä present β, 3-4ä lower ν*
–Present + 2nd NBI + 4MW RF: access ∼0.9-1.1ä present β, 4-6ä lower ν*

χi,neoclassical
Using GTC-NEO
(r/a=0.5-0.8)

Ions largely responsible
for IP scaling of confinement

(χi º χi-neoclassical at large r/a )

Electrons largely responsible
for BT scaling of confinement
(Te profile broadens at high BT )

Constant q and β
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Higher field BT=1T from new CS + 2nd NBI would enable
access to wide range of 100% non-inductive scenarios

• Use present NBI-CD + fast wave heating
• Vary qmin with density (CD efficiency ∝ Te/ne)
• State sustained for 1-1.5s (~1 τCR)

– NBI duration limited to 2s at 7.5MW

• Addition of 2nd NBI would enable:
–Longer NBI duration profile relaxation

• 10MW NBI available for 5s 3-4 τCR

–Control qmin & q-shear with NBI source and BT
–Study long-pulse MHD stability, PMI performance

IP = 0.8-1.2MA, H98y2 = 1.2-1.4
βN = 4.5-5, βT = 10-12%, 4MW RF

RTAN [cm]
__________________ 

50,  60, 70

ne / nGreenwald
0.95
0.72

IP = 0.95MA
H98y2 = 1.2
βN = 5
βT = 10%
4MW RF

BT = 0.55T, PNB=8MW, ENB=90keV

IP = 0.72MA
H98y2 = 1.2
βN = 6.2
βT = 14%
No RF

RTAN [cm]
__________________ 

50,  60, 70, 130
60,  70,120,130
70,110,120,130

ρpol

q(ρ)

ne / nGreenwald = 0.95
RTAN [cm]

__________________ 

50,  60, 70, 130
60,  70,120,130
70,110,120,130
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Summary:  NSTX will lead the U.S. effort to assess the 
properties and potential advantages of the ST for fusion

• NSTX will address important questions for ST and fusion science:
– Can high normalized pressure be sustained with high reliability?
– What are underlying modes and scalings of anomalous transport?
– How does large fast-ion content influence Alfvénic MHD & fast-ion loss?
– Can steady-state & transient edge heat fluxes be understood, controlled?

• Is liquid Li attractive for taming the plasma-material interface?
– Are fully non-inductive high-performance scenarios achievable in the ST?
– Can a next-step ST operate solenoid-free with high confidence?

• Upgrades will greatly expand the scientific capabilities of NSTX:
– Access and understand impact of reduced collisionality on ST physics

• Achievable through density reduction, higher BT, IP, power
• Impacts all topical science areas

– Access and understand impact of varied NBI deposition profile
• Achievable through implementation of 2nd NBI
• Impacts heating, rotation, current profiles, f(v) for fast-ion MHD
• Access fully non-inductive ramp-up and sustainment

• NSTX research will strongly address key gaps for next-step STs


