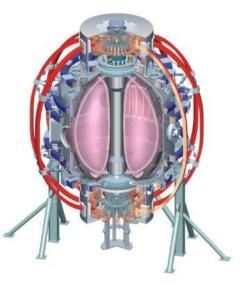


Supported by


Physics Motivation for NSTX Upgrade

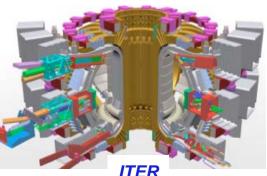
College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Jon Menard and Masa Ono

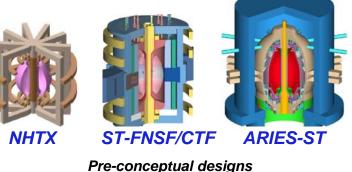
NSTX Program and Project Directors for the NSTX Research Team

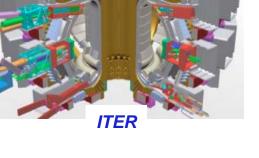
Fall 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec


NSTX Mission Elements

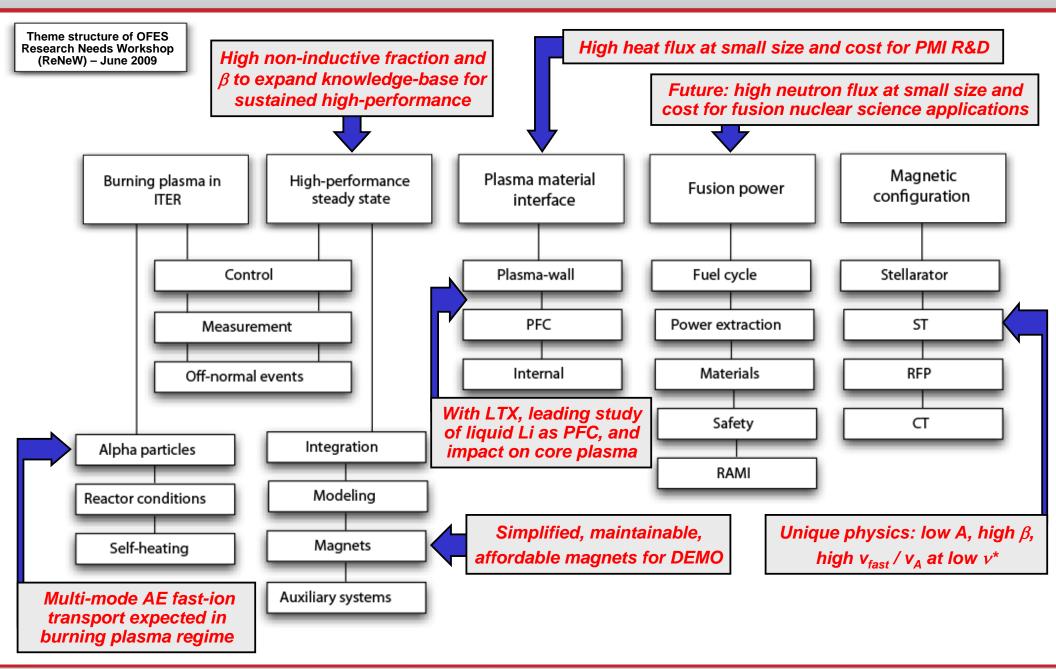
- Understand unique physics properties of ST ٠
 - Assess impact of low A, high β , high v_{fast} / v_A on toroidal plasma science
- **Complement tokamak physics, support ITER**
 - Exploit unique ST features to improve tokamak understanding
 - Benefit from tokamak R&D





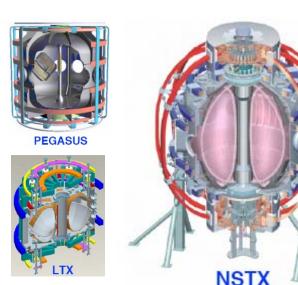
- Understand and utilize ST for addressing key gaps between ITER and DEMO
- Advance ST as fusion energy source

NSTX



NSTX Research Priorities:

- Full non-inductive current sustainment (i.e. without central solenoid)
 - -ST/tokamak requires full non-inductive current drive for steady-state
 - Neutral beam current drive may be strongly influenced by Alfvénic instabilities in ST
- Electron and ion transport in high-confinement regimes
 - -Need predictive capability to confidently extrapolate to next-steps
 - Electron energy transport increases in operating regimes of ST (i.e. high β , ρ^* , ν^*)
- Non-inductive start-up and ramp-up
 - Essential for ST applications without solenoid: CTF, DEMO
- "Taming the plasma-material interface (PMI)"
 - Solutions for very high particle/heat/neutron flux needed for CTF and DEMO
- High β , MHD control near stability limits, disruption physics
 - Higher β would accelerate component testing in CTF, essential for DEMO


NSTX is providing unique contributions to all magnetic fusion research needs – for the ITER era and beyond

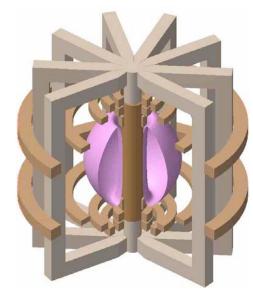
The ST offers attractive near-term applications for fusion development complementary to ITER

ST characteristics:

- High normalized pressure
- Compact geometry
- Simplified magnets

Near-term ST **Applications: Implications**: **Plasma-Material** Interface R&D + High heat flux at **Advanced Physics** small size and reduced cost Simplified construction, access, and maintenance High neutron flux at small size and reduced cost, reduced tritium consumption **Fusion Nuclear Component Testing**

Longer term: ST Power Plant offers simplest magnets, easiest maintenance


ST is attractive configuration for "Taming the plasma-material interface"

• FESAC-PP identified PMI issue as highest priority: "...solutions needed for DEMO not in hand, ...require major extrapolation and substantial development"

Scientific mission of <u>National High-power advanced</u> Torus e<u>X</u>periment (NHTX): *"Integration of a fusion-relevant plasma-material interface with stable sustained high-performance plasma operation"*

• PMI research and integration goals:

- Create/study DEMO-relevant heat-fluxes
- Perform rapid testing of new PMI concepts
 - Liquid metals, X-divertor, Super-X divertor
- PMI research at DEMO-relevant $T_{wall} \sim 600^\circ C$
- Plasma-wall equilibration: τ_{pulse} = 200-1000s
- Develop methods to avoid T retention
- Demonstrate compatibility of PMI solutions with high plasma performance:
 - High confinement without ELMs
 - High beta without disruptions
 - Steady-state, fully non-inductive
- Study high β_N , f_{BS} for ST-DEMO and ST-CTF
- Test start-up/ramp-up for ST-CTF and ST-DEMO

<u>N</u>ational <u>H</u>igh-power advanced <u>T</u>orus e<u>X</u>periment (NHTX)

Baseline operating scenario:

P _{heat}	50MW		
R ₀	1m		
Α	1.8-2		
к	≤ 3		
Вт	2T		
I _P	3-3.5MA		
βΝ	4.5		
βτ	14%		
n _e /n _{GW}	0.4-0.5		
f _{BS}	$\approx 70\%$		
f _{NICD}	100%		
H _{98Y,2}	≤ 1.3		
E _{NB}	110keV 50MW/m		
P/R			
Solenoid	$\frac{1}{2}$ swing to full I _P		

ST-based Component Test Facility (ST-CTF) is attractive concept for "Harnessing Fusion Power"

ST-CTF Required Conditions:

		—	
Performance metrics	ITER	Required Conditions	Demo Goals
Continuous operation	~hour	weeks	~months
14-MeV neutron flux on module (MW/m ²)	~0.8	1.0-2.0	~3
Total neutron fluence goal (MW-yr/m ²)	~0.3	6	~6-15
Duty factor goal	~1%	30%	~80%
Tritium self-sufficiency goal (%)	~0	~100	≥100

From M. Peng APS-2007, based on NCT presentation to FESAC 8/7/2007

W _L [MW/m ²]	0.1	1.0	2.0		
R0 [m]		1.20			
A		1.50			
kappa		3.07			
qcyl	4.6	3.7	3.0		
Bt [T]	1.13	1.13 2.1			
lp [MA]	3.4	8.2	10.1		
Beta_N	3	3.8			
Beta_T	0.14	0.18	0.28		
n _e [10 ²⁰ /m ³]	0.43	1.05	1.28		
f _{BS}	0.58	0.49	0.50		
T _{avgi} [keV]	5.4	10.3	13.3		
T _{avge} [keV]	3.1	6.8	8.1		
HH98		1.5			
Q	0.50	2.5	3.5		
P _{aux-CD} [MW]	15	31	43		
E _{NB} [keV]	100	239	294		
P _{Fusion} [MW]	7.5	75	150		
T M height [m]		1.64			
T M area [m²]		14			
Blanket A [m ²]		66			
F _{n-capture}		0.76			
P/R [MW/m]	14	38	61		
Solenoid		Iron core or MIC solenoid for startup			

ST-based Component Test Facility (ST-CTF)

Lower

Diverter

Vacuum

Seals

Diverter/SOL Shaping Coil

TFC

Center

Leo

Inlet Pipina

Upper Diverter

Upper Breeding Blanket

> Test Blanket Module

Lower Breeding

Blanket

Shieldina

TFC Return Leg /

Vacuum Vessel

Support

Platform

Sliding

Joint

Access

Hatch (VV/TFC

Return)

Outlet

Piping

Inboard

FW (5 cm)

Poloidal Field

Coils

Neutral -

Beam Duct

• ST advantages for CTF:

– Compact device, high β

Reduced device cost

Reduced operating cost (P_{electric})

Reduced T consumption

- Simplified vessel and magnets

Fully modularized core components

Fully remote assembly/disassembly

3		
D	NSTX	

FESAC Toroidal Alternates Panel (TAP) recently prioritized issues and gaps for the Spherical Torus (ST) for the ITER era

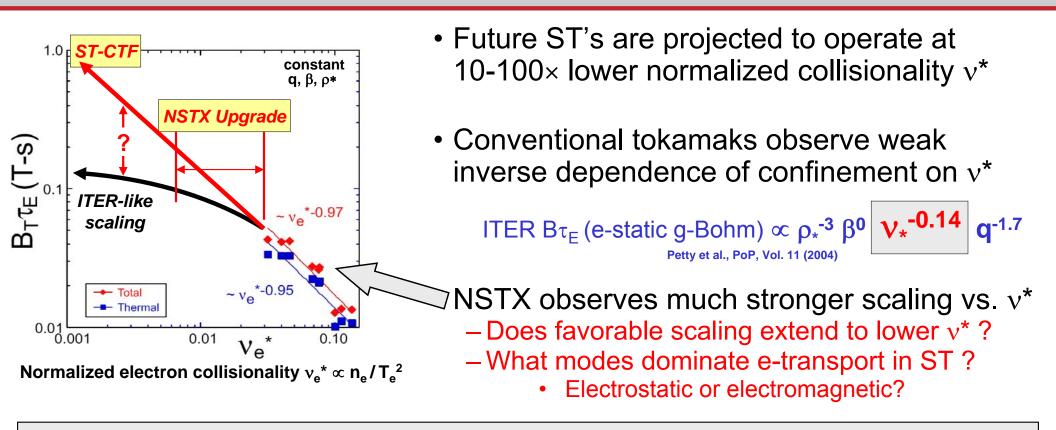
<u>ST ITER-era goal:</u> "Establish the ST knowledge base to be ready to construct a low aspect-ratio fusion component testing facility to inform the design of a demonstration fusion power plant"

<u>"Tier 1" issues and key questions from TAP, and NSTX goals:</u>

- Startup and Ramp-Up: Is it possible to start-up and ramp-up the plasma current to multi-MA levels using non-inductive current drive w/ minimal or no central solenoid?
 – NSTX goal: demonstrate non-inductive ramp-up and sustainment
- 2. <u>First-Wall Heat Flux</u>: What strategies can be employed for handling normal and off normal heat flux consistent with core and scrape-off-layer operating conditions?
 NSTX goal: assess high flux expansion, detached divertors, liquid metals
- 3. <u>Electron Transport</u>: What governs electron transport at low-A & low collisionality?
 NSTX goal: determine modes responsible for electron turbulent transport and assess the importance of electromagnetic (high β) and collisional effects
- 4. <u>Magnets</u>: Can we develop reliable center-post magnets and current feeds to operate reliably under substantial fluence of fusion neutrons?
 - -NSTX goal: develop and utilize higher performance toroidal field magnet

Performance gaps between present and next-step STs motivate near-term research prioritization and upgrades

Gaps to next-step STs:

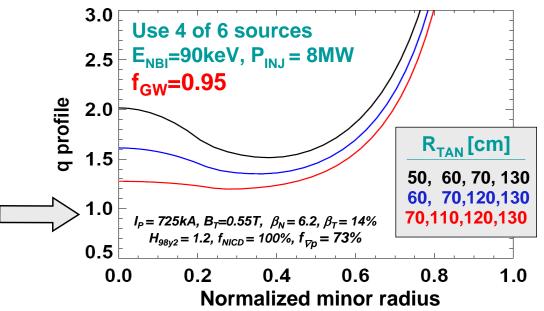

For NHTX, ST-CTF: reduce: $n_e \& v_e^*$, increase: NBI-CD, confinement, start-up/ramp-up For ARIES-ST: increase: elongation, β_N , f_{BS} , confinement, start-up/ramp-up

Near-term highest priority is to assess NHTX → ST-CTF scenarios

	Present high β_N and f_{NIC}	D NSTX	Upgraded NSTX	NHTX	ST-CTF	ARIES-ST	
	Α	1.53	1.65	1.8	1.5	1.6	
	κ	2.6-2.7	2.6-2.8	2.8	3.1	3.7	
	β _T [%]	14	10-16	12-16	18-28	50	
	β _N [%-mT/MA]	5.7	5.1-6.2	4.5-5	4-6	7.5	
	Ι _i (1)	0.5-0.65	0.55-0.75	0.5-0.7	0.25-0.5	0.24	
	f _{NICD}	0.65	1.0	1.0	1.0	1.0	
	f _{BS+PS+Diam}	0.65	0.6-0.8	0.65-0.75	0.45-0.5	0.99	
	f _{NBI-CD}	0.11	0.2-0.4	0.25-0.35	0.5-0.55	0.01	
	f _{Greenwald}	0.8-1.0	0.6-0.8	0.4-0.5	0.25-0.3	0.8	
	V [*] e	0.15	0.04	0.01	0.002	0.007	
	H _{98y2}	1.1	1.15-1.25	1.3	1.5	1.3	
ľ	Dimensional/Device Parameters:						
	Solenoid Capability	Ramp+flat-top	Ramp+flat-top	Ramp to full I _P	No/partial	No	
	I _P [MA]	0.72	1.0	3-3.5	8-10	28	
	B _T [T]	0.52	0.75-1.0	2.0	2.5	2.1	
	R ₀ [m]	0.86	0.92	1.0	1.2	3.2	
	a [m]	0.56	0.56	0.55	0.8	2.0	
	I _P / aB _{T0} [MA/mT]	2.5	1.8-2.4	2.7-3.2	4-5	6.7	

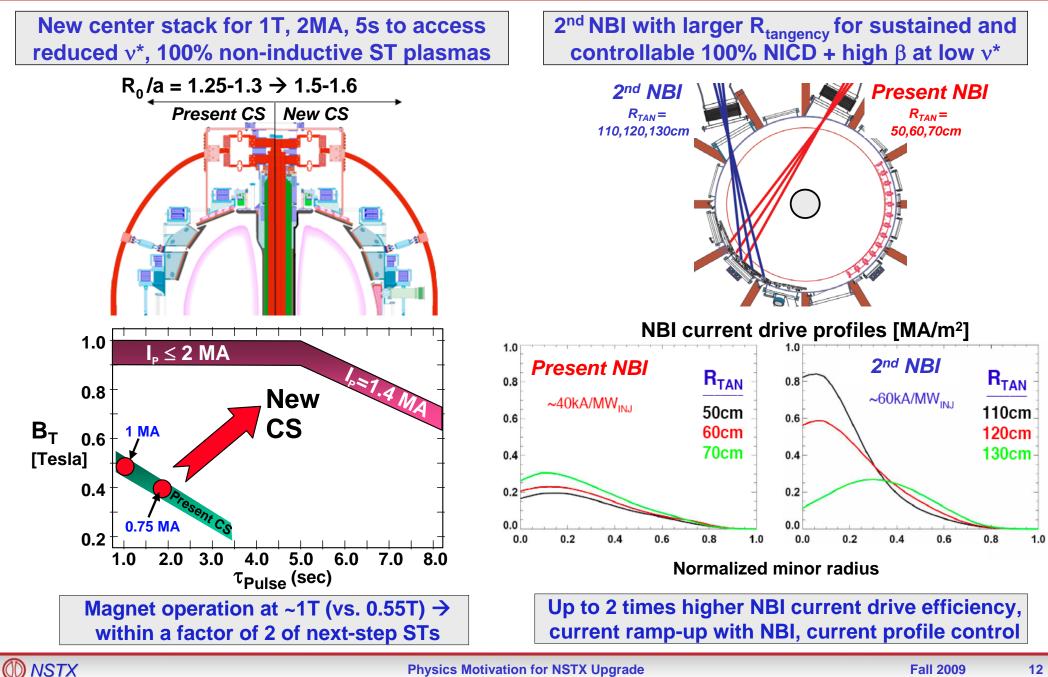
🔘 NSTX

Access to reduced collisionality is needed to understand underlying causes of ST transport, scaling to next-steps


- Higher toroidal field & plasma current enable access to higher temperature
- Higher temperature reduces collisionality, but increases equilibration time
- Proposed upgrade: Double field and current + 3-5× increase in pulse duration to substantially narrow capability gap

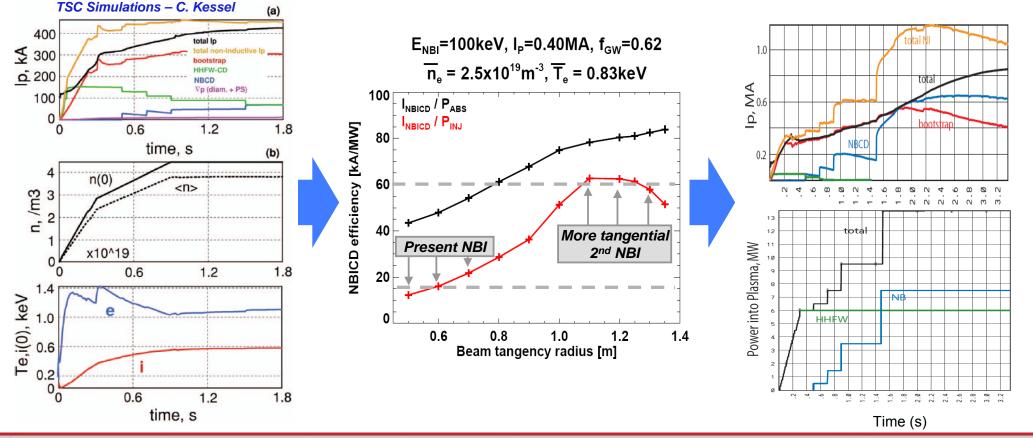
Increased auxiliary heating and current drive are needed to fully exploit increased field, current, and pulse duration

- Higher heating power to access high temperature and β at low collisionality Need additional 4-10MW, depending on confinement scaling
- Increased external current drive to access and study 100% non-inductive
 Need 0.25-0.5MA compatible with conditions of ramp-up and sustained plasmas


• Proposed upgrade: double neutral beam power + more tangential injection – More tangential injection \rightarrow up to 2 times higher efficiency, current profile control

- ITER-level high-heat-flux plasma boundary physics capabilities & challenges
- q(r) profile very important for global stability, electron transport, Alfvénic instability behavior
 - Variation of mix of NBI tangency radii would enable core q control

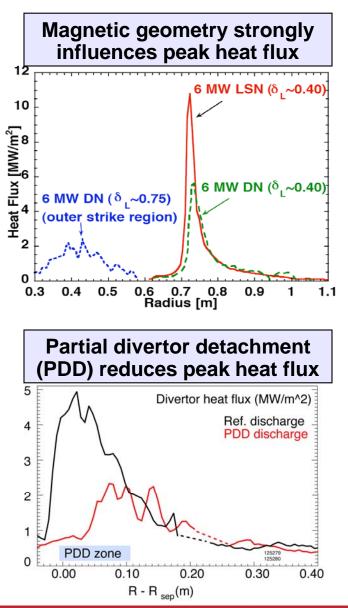
Major facility upgrades are proposed to bridge performance and understanding gaps between present and next-step STs

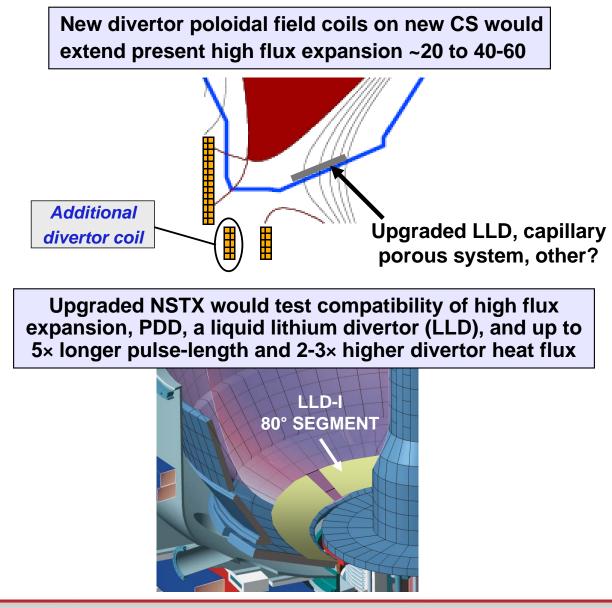

Non-inductive ramp-up to ~0.4MA possible with RF + new CS, ramp-up to ~1MA possible with new CS + more tangential 2nd NBI

Ramp to ~0.4MA with fast wave heating:

- High field $\ge 0.5T$ needed for efficient RF heating
- ~2s duration needed for ramp-up equilibration
- Higher field 0.5→1T projected to increase electron temperature and bootstrap current fraction

Extend ramp to 0.8-1MA with 2nd NBI:

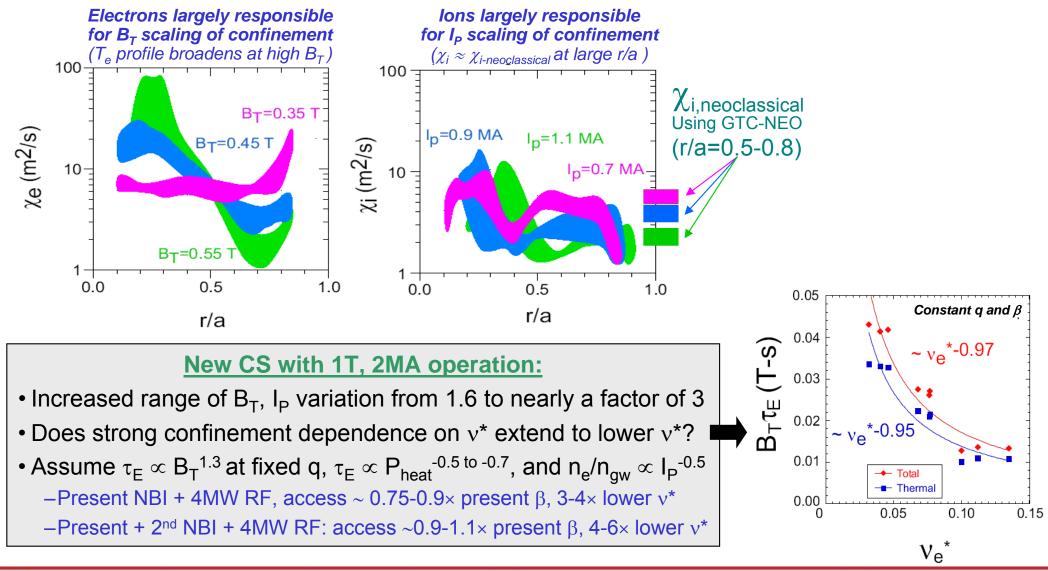

- Benefits of more tangential injection:
 - Increased NBI absorption = $40 \rightarrow 80\%$ at low I_P
 - Current drive efficiency increases: ×1.5-2
- New CS needed for ~3-5s for ramp-up equilibration
 - Higher field 0.5→1T also projected to increase electron temperature and NBI-CD efficiency


🔘 NSTX

Additional PF coils of new CS would provide flexibility to control flux-expansion for heat flux control

Present NSTX:

NSTX with new CS:



🔘 NSTX

Physics Motivation for NSTX Upgrade

NSTX Upgrades needed to extend ST confinement scaling studies to higher field and current and lower collisionality

• NSTX H-mode thermal confinement scaling differs from higher aspect ratio scaling: $\tau_{E,NSTX} \propto B_T^{0.9} \ I_p^{0.4} \rightarrow \text{strong } B_T \text{ scaling}$ $\tau_{E,98y,2} \propto B_T^{0.15} \ I_p^{0.93} \rightarrow \text{weak } B_T \text{ scaling}$

0 NSTX

Higher field B_T=1T from new CS + 2nd NBI would enable access to wide range of 100% non-inductive scenarios

 Addition of 2nd NBI would enable: Use present NBI-CD + fast wave heating -Longer NBI duration \rightarrow profile relaxation • Vary q_{min} with density (CD efficiency $\propto T_e/n_e$) • 10MW NBI available for 5s \rightarrow 3-4 τ_{CR} • State sustained for 1-1.5s (~1 τ_{CR}) -Control q_{min} & q-shear with NBI source and B_T NBI duration limited to 2s at 7.5MW -Study long-pulse MHD stability, PMI performance q profiles at 100% NICD fraction B_T =1T, P_{NB} =10MW, E_{NB} =110keV q profiles at 100% NICD fraction B_T =1T, P_{NB} =7.5MW, E_{NB} =100keV R_{TAN} [cm] / n Greenwald 0.95 50, 60, 70, 130 0.72 60, 70, 120, 130 6 70,110,120,130 $n_{e}/n_{Greenwald}$ q(p) $I_{P} = 0.95MA$ 1.4 $H_{98v2} = 1.2$ $\beta_N = 5$ 4 1.1 $\beta_{T} = 10\%$ 4MW RF 1.0 **q(**ρ) 0.0 0.4 0.6 0.8 1.0 0.2 Ppol 0.77 3.0 $B_{T} = 0.55T, P_{NB} = 8MW, E_{NB} = 90 keV$ 2 R_{TAN} [cm] 0.59 R_{TAN} [cm] $2.5 - n_{e} / n_{Greenwald} = 0.95$ 50, 60, 70, 130 0.4560, 70,120,130 50, 60, 70 70,110,120,130 2.0 **q(**ρ) _{1.5} $I_{\rm P} = 0.72 \,{\rm MA}$ 0 $H_{98v2} = 1.2$ 0.2 0.4 0.6 0.0 0.8 1.0 $\beta_{\rm N} = 6.2$ 1.0 ρ_{pol} $\beta_{T} = 14\%$ No RF $I_{P} = 0.8-1.2MA, H_{98v2} = 1.2-1.4$ 0.5 0.6 0.0 0.2 0.4 0.8 1.0 $\beta_{N} = 4.5-5, \beta_{T} = 10-12\%, 4MW RF$ ρ_{pol}

Summary: NSTX will lead the U.S. effort to assess the properties and potential advantages of the ST for fusion

- NSTX will address important questions for ST and fusion science:
 - Can high normalized pressure be sustained with high reliability?
 - What are underlying modes and scalings of anomalous transport?
 - How does large fast-ion content influence Alfvénic MHD & fast-ion loss?
 - Can steady-state & transient edge heat fluxes be understood, controlled?
 - Is liquid Li attractive for taming the plasma-material interface?
 - Are fully non-inductive high-performance scenarios achievable in the ST?
 - Can a next-step ST operate solenoid-free with high confidence?

Upgrades will greatly expand the scientific capabilities of NSTX:

- Access and understand impact of reduced collisionality on ST physics
 - Achievable through density reduction, higher B_T , I_P , power
 - Impacts all topical science areas
- Access and understand impact of varied NBI deposition profile
 - Achievable through implementation of 2nd NBI
 - Impacts heating, rotation, current profiles, f(v) for fast-ion MHD
 - Access fully non-inductive ramp-up and sustainment

NSTX research will strongly address key gaps for next-step STs