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• Improve / optimize gas fueling. ITER will rely on central fueling
(pellet, compact toroid), but plasma start-up and edge fueling will
use gas puffing. SGI is viewed as supplemental approach for
ITER. Unique contribution of NSTX to novel fueling techniques.

•  Supersonic gas jet fueling results to date
- limiter tokamaks (HL-1M, Tore Supra): injects 0.2-0.9 of total plasma
inventory in several ms, perturbative, fueling efficiency 0.3-0.6
- divertor tokamak (AUG), divertor stellarator (W7-AS): similar gas jet
parameters, but FE ~ 0.1-0.3

• Implemented in NSTX in FY04, started XP 516 in FY05

Supersonic gas jet is a unique fueling technique
studied in NSTX
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Supersonic gas jet penetration mechanism

 

• Gas jet retains low-divergence shape (compressible fluid gasdynamics)
• Gas jet eventually ionizes and creates a plasmoid
• Gas jet retains cluster-molecular-atomic-ion structure
• SOL/edge electrons with low Te do not fully penetrate gas jet
• Plasmoid can not penetrate deep into the
  magnetized plasma due to insufficient
  velocity and high plasma kinetic and
  magnetic pressure
• Single particle model is inapplicable
• Modeling must include continuity,
  momentum, energy balance (Braginskii) equations
  with detailed reaction rates and neutral transport
  (such as UEDGE+DEGAS 2)

• Velocity distribution function is drifting narrowed Maxwellian with udrift = uflow
•  uflow = M c = M √  γ kT/m > vtherm
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SGI on NSTX: placement and control elements
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SGI head is a densely packed apparatus

 

• Veeco PV-10 gas valve: dthroat=0.02”, typical opening time 1-2 ms, driving voltage150 V
• Thermocouples in shroud and in gas valve
• Two magnetic pick-up coils on shroud front surface for Bz, Bt  measurements
• Three magnetic pick-up coils in shielded box inside shroud for Bz , Br  and magnetic
fluctuations measurement
• Langmuir probe: flush-mounted design, dtip= 1.75 mm, I-V recorded at 5 kHz, -50 <V<50
• Shroud: CFC and ATJ graphite
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Laval contoured nozzle is used in NSTX SGI

 

• Graphite nozzle L = 23.4 mm
• True Laval geometry calculated for air
at P=1 atm, designed for M = 8, linearly
scaled down to obtain dthroat = 0.01”
(throughput requirement)
• Compressible fluid theory: isentropic
core and boundary layer scale differently!
• Nozzle is made by mechanical
machining using special tool with
tolerance +- 0.0025”
• Nozzle attached to valve with a retainer
using Viton O-ring

Nozzle design courtesy of Drs A. J. Smits, S. Zaidi (Princeton Univ.)
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SGI parameters characterized off-line and in situ

 
• NSTX SGI is operated at 45-60 Torr l /s (~ (3.2 - 5) x 1021 mol/s)
• NSTX gas injector rates: HFS: 10 - 50 Torr l /s, LFS: 20 - 120 Torr l /s
• Jet divergence half-angle: 6o - 25o

• Hydrogen / Deuterium: M = 4, T ~ 60 - 160 K, ρ ~ 5 x 1017 cm-3,
Re = 6000, vtherm ~ 1100 m/s, vflow = 2400 m/s
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• Goals of XP:
- Determine fueling efficiency (FE), penetration characteristics
- Determine feasibility of fueling of H-mode plasmas
- Study effects on edge plasmas
- Develop model for high-pressure gas jet interaction with
magnetized plasma

• SGI and “payload” diagnostics worked well in FY05:
- Motorized SGI probe and PLC worked well
- Diagnostic package (“payload”) commissioned and operated

  - Thermocouples measure room temperatures
  - Langmuir probe Isat routinely obtained, Te analysis in progress
  - Edge Magnetic Sensor: Bz, Br, Bt coils and Mirnov coil signals

routinely obtained, initial calibration completed, signals used in Poloidal
Field only Plasma Start-up Experiment

XP-516: Supersonic gas jet fueling
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• LCFS - SGI distance scan in ohmic plasmas
demonstrated that “closer is better”
• Cannot go closer than RF limiter in NBI-heated
plasmas due to interaction with energetic particles
• Compatible with H-mode up to Inj. rate of 60
Torr l /s (conventional gas injection is not)
• FE is between 0.1 and 0.3
• SGI used gas pulses 70-300 ms
• Injected 0.1 - 1.0 of total plasma inventory
• Due to localization SGI gas pulse is not seen
as pulse on MPTS or interferometry ne traces
• Need to improve FE analysis: Present analysis for Ne
only, need to exclude carbon contribution to particle
inventory (using Ni  from CHERS)

XP 516 results
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• SGI increases edge density (in H-modes, “ears”  density)
• Effect is not always large -> need to look at total particle inventory
• Edge MHD and ELMs affect fueling

Particles from SGI are deposited at the edge
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SGI and diagnostics perform well in real plasmas

 

• Example: NSTX 2 MW
   NBI-heated
   H-mode plasma

• SGI starts at 0.180 s

• SGI rate ~ 55 Torr l / s

• FE ~ 0.1 - 0.3

• Good diagnostic signal
SNR
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Summary
• Supersonic gas injector and diagnostic package on a movable probe

commissioned and operated on NSTX in FY04 - FY05

• Supersonic gas jet used to fuel ohmic and 2-6 MW NBI-heated L- and
H-mode plasmas. Compatibility with H-mode pedestal has been
demonstrated.

• Measured fueling efficiency 0.1 - 0.3

• Supersonic gas jet does not perturb plasma edge

• Need to finish XP 516 (fueling during plasma start-up, H-mode access
with SGI, …)

• Expected to be an important tool in lithium experiments
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Backup slides
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NSTX fueling
• Gas injection: low field side (LFS, top + side), high field side (HFS, midplane +
shoulder), private flux region.  D2, He, injected at  S = 20 - 120 Torr l /s.
• Neutral beam injection system: three beams,  40 - 100 keV, 6 MW, fueling
rate: S < 6 Torr l / s
• Supersonic gas injection: S = 60 Torr l / s
NSTX wall conditioning
• Between shots He GDC
• He conditioning plasmas
• TMB and  Plasma TMB
NSTX pumping
• Turbomolecular pump (3400 l / s)
• NBI cryopump (50000 l / s)
• Conditioned walls
PFC
• ATJ graphite tiles on divertor and
   passive  plates
• ATJ and CFC tiles on center stack
• Tile thickness 1” and 2”

NSTX reference data
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SGI: fueling and diagnostic packages on a probe

 

• Thermionics ZC-450 movable probe, stroke 24”, travel rate < 15 in/s
• 6-axis Stepper Motor Controller, controlled using RS-232 port
• EPICS software used for SMC control and communication with Vacuum PLC
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Laboratory tests designed to evaluate SGI

 
• Any nozzle must be tested to enable comparison with calculations - real nozzles often do not
perform as expected
• Flow parameters diagnostic methods: Shadowgraphy, Schlieren photography, Laser induced
fluorescence, Electron beam fluorescence, Laser scattering, Dust imaging, and others are either too
complicated or would not work in vacuum, in a pulsed regime
⇒ Impact pressure measurement + supersonic Rayleigh-Pitot  law for Mach number  and jet
pressure profile measurements at various distances z from the nozzle
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Laboratory tests confirm high Mach number

 

•  Supersonic Rayleigh-Pitot law used to infer Mach number M
from P0/Pi measurements

(gauge)
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Laboratory tests confirm low divergence of gas jet

 

For comparison: divergence half-angle of viscous sonic flow - 30o,
                            molecular effusion from orifice - 60o

Jet divergence half-angle: 6o - 25o 

D2: M = 4, T ~ 60 - 160 K, ρ ~ 5 x 1017 cm-3, Re = 6000
D2: vtherm ~ 1100 m/s, vflow = 2400 m/s  
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Flow rate is measured in situ on NSTX

 
• Flow rate (Torr l / s): Γ =  VNSTX dP / dt

• NSTX SGI is operated at 45-60 Torr l /s (~ (3.2 - 5) x 1021 mol/s)

• Future SGI may require Pplenum > 2500 Torr

• NSTX gas injector rates: HFS: 10 - 50 Torr l /s, LFS: 20 - 120 Torr l /s
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Fast imaging of gas jet - plasma interaction

 

• Used Canadian Photonic camera with 0.5-2 ms framing rate
• Example frames above: (a) collapsing plasma with a wide Te = 3
eV, ne = (2-2.5) x 1018 m-3 scrape-off layer,  (b) 6 MW NBI-heated
L-mode plasmas and (c) 4 MW NBI-heated H-mode plasmas


