

Strategy for Implementing an EBW Heating & Current Drive System on NSTX

Gary Taylor

Presentation to Wave-Particle Science Focus Group

February 4, 2004

1 of 24 NSTX EBW Project - SFG 2/4/04 - Taylor

- Project Purpose & Scope
- Frequency Choice & Source Development
- Coupling, Deposition and CD Efficiency:
 Implications for launch frequency
- Estimated Project Cost & Schedule
- MAST EBW Launcher Collaboration
- Summary

→ • Project Purpose & Scope

- Frequency Choice & Source Development
- Coupling, Deposition and CD Efficiency:
 Implications for launch frequency
- Estimated Project Cost & Schedule
- MAST EBW Launcher Collaboration
- Summary

EBW Can Provide Critical Off-Axis Current Drive in NSTX at High β

- ~ 100 kA of off-axis CD needed to sustain β ~ 40% in NSTX
- Ohkawa EBW CD can use the large off-axis electron trapping fraction in NSTX to achieve high CD efficiency
- EBW H&CD can also assist startup

- Modulated EBW heating can enable electron transport studies
- NTM stabilization with EBWCD is more challenging than ECCD, due to lack of beam steering

EBW Project Scope Driven by the NSTX 5-Year Plan

- Fokker-Planck modeling predicts CD efficiencies ~ 40-50 kA/MW in projected high β NSTX plasma operating scenarios
- ~ 100 kA of EBW off-axis CD --> ~ 4 MW of RF source power
- RF source frequency choice driven by toroidal field, EBW coupling requirement & plasma accessibility at high β
- System designed to operate for RF pulse lengths of at least 2 s
- Optimum project schedule based on 2003 NSTX 5-year plan
- Flat FY05 & FY06 budget --> ~ 2 year delay in 1 MW install

- Project Purpose & Scope
- Frequency Choice & Source Development
 - Coupling, Deposition and CD Efficiency:
 Implications for launch frequency
 - Estimated Project Cost & Schedule
 - MAST EBW Launcher Collaboration
 - Summary

Choice of RF Source Frequency Constrained by B_t, EBW Coupling and Accessibility

- For EBWCD need off-midplane launch to provide n_{//} shift
- EBW damping is on Doppler-downshifted EC harmonics
- Launch at 14 & 21 GHz looks OK for plasma access
- Launch at 28 GHz may damp on both 3 f_{ce} & 4 f_{ce}:
 - But small changes in B_t can help

Choice of RF Source Frequency Also Driven by Available RF Technology and Future Applications

- No long pulse (~ 1 s) MW level, RF sources available at ~ 14 & ~ 21 GHz
- Gycom (Russia) makes 0.5 MW, 28 GHz gyrotron with 2 s pulse length (~ \$500k/tube, including magnet, Gycom provided 110 GHz gyrotrons to DIII-D)
- ~14 GHz, ~21 GHz & 28 GHz tubes can be designed for 1 megawatt, 5 s operation (development ~ \$1M + \$875k/tube, 2 years to make first operational tube)
- 28 GHz could also be used on NCSX or future PPPL $B_t \sim 1T$ ST

Source Frequency Decision Needs to Precede Start of Megawatt Level Gyrotron Development

 Internal tube design (mode converter etc.) will change significantly depending on choice of operating frequency

EBW Modeling has a Bigger Impact on Frequency Choice than EBW Emission Coupling Studies

 EBW emission measurements on NSTX this year provide a consistency check on theory, but:

> --> emission can be "polluted" due to multiple reflections & possible non-EBW sources
> --> does not test prototype EBW launcher geometry

Model conceptual EBW launcher for proposed NSTX operating scenarios:

--> need to agree on planned scenarios (B_t , β , etc..)

- Modeling EBW coupling already started for ~ 14 GHz:
 --> model coupling at 21 GHz & 28 GHz this year
 (Carter & Jaeger [ORNL]; collaboration with Preinahelter [Prague]?)
- EBW ray tracing, deposition and CD efficiency modeled with GENRAY & CQL3D for frequencies between 14 to 28 GHz

- Project Purpose & Scope
- Frequency Choice & Source Development
- Coupling, Deposition and CD Efficiency: *Implications for launch frequency*
 - Estimated Project Cost & Schedule
 - MAST EBW Launcher Collaboration
 - Summary

Oblique, "O-X-B", Launch Appears Resilient to Changes in Edge Density Gradient

• OPTIPOL surveys EBW coupling - uses impedance matrix from GLOSI

- Optimum n_{//} = 0.55; toroidal angle ~ 34° from normal to B
- > 75% coupling for O-X-B antenna with ± 5 degree beam spread

Maximum EBW Coupling Efficiency Obtained for Near-Circularly Polarized Launch

- Optimum polarization insensitive to edge field pitch variations of up to ± 15 degrees; but may need ellipticity control for startup
- About three man months needed to extend modeling to 28 GHz

Modeling Shows Efficient, Off-Axis, EBW CD at ~ 14 GHz & ~ 21 GHz in β = 41%, B_t = 3.5 kG NSTX Plasmas

For $\beta \sim 41\%$ at B_t = 3.5 kG, 28 GHz Power Mostly Damps at Plasma Edge & Drives Fisch-Boozer Current

TORUS EXPERIMENT

CompX GENRAY/CQL3D

15 of 24 NSTX EBW Project - SFG 2/4/04 - Taylor

Increasing B_t to 3.75 kG for $\beta \sim 41\%$ Plasma, Allows 28 GHz to Drive Efficient Off-Axis Current

TORUS EXPERIMENT

CompX GENRAY/CQL3D

16 of 24 NSTX EBW Project - SFG 2/4/04 - Taylor

Conceptual Designs for Steerable Mirror EBW Launchers being Considered for NSTX

- EBW mirror launcher design can benefit from PPPL experience developing DIII-D ECRH/ECCD antenna
- Propose collaboration with ORNL on EBW launcher development
- Switching between above and below midplane launch would allow flexibility for co- or counter-CD, and Ohkawa or Fisch-Boozer CD:
 - --> Significant diffraction at ~14 GHz is challenging

- Project Purpose & Scope
- Frequency Choice & Source Development
- Coupling, Deposition and CD Efficiency:
 Implications for launch frequency
- Estimated Project Cost & Schedule
 - MAST EBW Launcher Collaboration
 - Summary

Estimated Project Cost* (Excluding Contingency) : \$14.8 M Assumes 1 MW installed in 2007, 4 MW in 2008

Title	FY04	FY05	FY06	FY07	FY08	Total
Site Preparation	20	170	360	120		670
Power Conversion	10	100	1625	1400	825	3960
Gyrotron Cooling	10	80	250	25	25	390
Gyrotron	50	750	1150	1325	1300	4575
RF Power Transmission	20	80	350	620	350	1420
Instrumentation and Control	10	190	50	50	50	350
EBW Launchers	50	500	650	900	900	3000
Proj. Management	10	120	150	100	50	430
Total	180	1990	4585	4540	3500	14795

* Funding levels are expressed in \$k

 For flat FY05 & FY06 budget above schedule slips ~ 2yrs

Excluding Contingency, First MW Costs ~ \$7M (Including Gyrotron Development), ~ \$2.6M for Each Addition MW

- Gyrotron development cost, excluding contingency, ~ \$1M, should be budgeted through VLT
- 1 MW system would allow local heating for transport studies EBW-assisted startup, and possibly indications of EBWCD
- Level of contingency needs to be determined based on risk assessment
- Preliminary optimum funding profile developed to match original 5-year program plan (July 2003)
- Optimum funding has 1 MW of source power installed in Feb 2007, ramping to 4 MW (~ 3 MW EBW in NSTX) in Aug 2008

- Project Purpose & Scope
- Frequency Choice & Source Development
- Coupling, Deposition and CD Efficiency:
 Implications for launch frequency
- Estimated Project Cost & Schedule
- MAST EBW Launcher Collaboration
 - Summary

Benefit of MAST 28 GHz EBW Launcher Collaboration is Questionable & May Waste Resources

- MAST planning < 200kW, 28 GHz EBW system with < 40 ms pulse length for plasma startup experiments late this year
- Should we design & build an EBW launcher for MAST's 28 GHz system?
 - --> Allows test of prototype NSTX EBW launcher on MAST in 2006
- Available 28 GHz power on MAST in 2005-6 too low to directly observe local power deposition
- Development of a prototype EBW launcher for MAST would be costly, probably > \$500k

- Project Purpose & Scope
- Frequency Choice & Source Development
- Coupling, Deposition and CD Efficiency:
 Implications for launch frequency
- Estimated Project Cost & Schedule
- MAST EBW Launcher Collaboration

4 MW EBW Project Can Provide ~ 100kA Off-Axis Current Deemed Critical for Sustained High β NSTX Operation

- Frequency choice largely driven by modeling, not emission expts.
 - --> polarization control appears critical
 - --> modeling allows frequency decision by late FY04
 - --> frequency decision must precede gyrotron development
- Significant diffraction at 14 GHz challenges EBW launcher design
- Modeling needed to decide between 21 & 28 GHz
- 28 GHz looks promising:
 - --> 0.5 MW, 2s sources available from Gycom (Russia) --> could use 28 GHz on NCSX at $B_t \sim 1T$ or on future PPPL ST
- ~1 MW, long pulse (~5 s) source needs ~ \$1M, 2 yr development
- 28 GHz MAST launcher expt. at < 200kW is too low a power to test EBW heating --> need ~ 1 MW

