Status of EBW Emission Measurements on NSTX

S.J. Diem NSTX Physics Meeting October 8th, 2007

Outline

VSTX

- Electron Bernstein wave emission background
- Overview of EBW diagnostic and goals for 2007 NSTX run campaign
- Recent results from 2007 run campaign
 - H-mode scan results
 - Scan of plasma vertical position
 - LITER scan

EBW coupling to electromagnetic waves

- EBW emitted at EC harmonic converts to the X-mode near UHR and then O-mode at f=f_{pe}
- Emission will be elliptically polarized (~1.6) due to oblique view of plasma
- B-X-O transmission window depends on:
 - Magnetic field pitch (~30-45% in NSTX)
 - determines location of window
 - Density scale length
 - determines width of window
- Experimental transmission defined as:

$$Transmission_{EBW} = \frac{T_{rad}}{T_{e,\text{Thomson}}(R_{emission})}$$

Steered EBW antennas allow spatial mapping of B-X-O emission window

XP 720: EBW emission in H-mode plasmas

- Measure 8-36 GHz thermal EBW emission via oblique B-X-O coupling
- Study behavior of EBWs emitted from H-mode plasmas at $\rm f_{ce},\,2f_{ce},\,and\,3f_{ce}$
- Experiment had three objectives:
 - Study effect of collisions on B-X-O mode coupling
 - Investigate dependence of B-X-O coupling on plasma parameters
 - Map experimental transmission efficiency in H-mode plasmas

B-X-O transmission efficiency mapping in H-modes plasmas

- Repeat target discharge: I_p~0.9 MA, T_e(0)~1 keV
- Antenna pointing direction scanned between shots
- Experimental transmission efficiency defined as:

$$Transmission_{EBW} = \frac{T_{Rad}}{T_{e,\text{Thomson}} (R_{emission})}$$

- Compare experimental and theoretical transmission efficiencies
 - Theoretical does not account transmission losses of EBW from emission to mode conversion

Measured B-X-O transmission of 40-50% in H-mode plasmas with Li conditioning, high κ

- Maximum experimental B-X-O transmission for 2f_{ce}=28 GHz was 45%
- Peak in measured B-X-O transmission similar to predicted location
- Simulated B-X-O transmission for 2f_{ce}=28 GHz was ~100%
- Measurements for f_{ce}=18 GHz available but awaiting modifications to EBE code

Change in vertical position of magnetic axis decreased measured T_{rad}

- Scan in the vertical position of the plasma magnetic axis was achieved by changing Dr_{sep}
 – 124311 z_{maxis} went from 0 cm to -8 cm to 0 cm
 - 124312 z_{maxis} went from 0 cm to +6 cm to 0 cm
- Target plasma: I_p=0.8 MA, T_e(0)~1 keV, n_e(0)~3x10¹³ cm⁻³

EBE measurements/simulation show decrease in emission with change in Z_{maxis}

- Z_{maxis} decrease lead to ~150 eV drop in measured T_{rad}
- EBE simulation shows drop in conversion efficiency occurs at Z_{maxis} drop
- Z_{maxis} increase lead to ~200 eV drop in measured T_{rad}
- EBE simulation shows increased Doppler broadening effects occurs at Z_{maxis} increase

LITER scan investigates effect of edge parameters on T_{rad}

- Target plasma: I_p=0.8 MA, T_e(0)~0.7 keV, n_e(0)~4x10¹³ cm-3
- Increased LITER evaporation rate to observe effects on EBE

 - – 124290 171 mg of Li

Increase in measured T_{rad} observed with increase in Li evaporation

0.6

0.4

0.2

0.0

0.2

0.3

0.5

0.4

Time [s]

- Measured T_{rad} increased from ~200 eV to ~350 eV with increased Li evaporation
- Lithium conditioning decreased L_n (3 \rightarrow 2 cm) and increased edge T_e
- Measured EBE transmission efficiency increased from ~20% to \sim 45% with lithium

Good T_{rad} agreement with EBE simulation in shot with highest Li evaporation rate

- For 0 mg of Li conditioning measured $T_{rad}{\sim}200$ eV, simulation $T_{rad}{\sim}400{-}600$ eV
- For highest Li evaporation rate (286 mg) measured and simulated T_{rad} agree
- Increased agreement between with and without collisional damping simulations may indicate reduction of collsional damping observed with lithium conditioning

- Decrease in L_n (3+2 cm) with lithium conditioning
- No significant increase in T_e near the mode conversion region observed
 - However, EBE simulation results with/without collisions has best agreement with 286 mg of lithium evaporation

Conclusions and future work

- Measured transmission efficiency for H-mode plasmas for 2f_{ce}=28 GHz was 40-50%
- Dr_{sep} scan allowed for controlled scan in z_{maxis}
 - Increase in z_{maxis} lead to decrease in measured T_{rad} due to increase in Doppler broadening
 - Decrease in z_{maxis} lead to decrease in measured T_{rad} due to increase in L_{n}
- Lithium conditioning scan increased measured $2f_{ce}$ =28 GHz transmission efficiency from 20-45%
- Future work will focus on comparing emission from 2006 and 2007 H-mode plasmas to understand increase in $\rm T_{rad}$ in 2007

124284 - 0 mg lithium

NSTX

 2f_{ce}=28 GHz emission 0.6 Measured Trad EBE sim. Trad (zeff=0) from axis ~1.0-1.1 m Trad [keV] EBE sim. Trad (zeff=1.5) EBE sim. Trad (zeff=2) 0.4 Max transmission efficiency $\sim 20\%$ 0.2 2f_{ce}=28 GHz 0.0 1.5 0.1 0.2 0.3 0.5 0.0 0.4 0.6 Time [s] 1.0 Ray-tracing from EBE simulation 0.5 0.04t=0.3 s Z [m] 0 -0.04-0.5 -0.08 -1.0 0.9 1.2 1.3 1.0 1.1 1.4 1.5 -1.5 R [m] 0.5 1.5 R [m]

124290 - with 171 mg of Li

- 2f_{ce}=28 GHz emission from axis ~1.0-1.1 m
- Max transmission efficiency $\sim 30\%$

1.5

1.5

1.0

0.5

-0.5

-1.0

-1.5

0.5

R [m]

Z [m]

R [m]

124309 - with 286 mg of Li

- 2f_{ce}=28 GHz emission from axis ~1.0-1.4 m
- Max transmission efficiency ~ 40-50%

2f_{ce}=28 GHz

1.5

Li conditioning effects on emission location

- 0, 171 mg of evaporated lithium emission primarily from core
- 286 mg of evaporated lithium emission location oscillated between core and edge of plasma

- Yielded emission from both $2f_{ce}$ (core) and $3f_{ce}$ (edge)

