

Helium retention in lithium and implications for NSTX

V. A. Soukhanovskii¹

Acknowledgements: D. Mansfield², H. W. Kugel², R. Bell², R. Kaita², A. L. Roquemore²

> ¹ Lawrence Livermore National Laboratory, Livermore, CA ² Princeton Plasma Physics Laboratory, Princeton, NJ

> > NSTX Program Meeting 9 August 2007 Princeton, NJ

Helium does not chemically interact with lithium (tokamak experience)

- Fresh lithium surface can adsorb a helium atom
- A helium atom can desorb from the surface
- Russian experience (S. V. Mirnov, V. A. Evtikhin, T-11M):
 - ✓ Ohmic helium plasmas in T-11M with CPS lithium limiter and lithium-coated walls
 - ✓ No chemical interaction between He and Li (unlike H₂/D₂ that dissolve and form hydrides / deuterides)
 - \checkmark No anomalous erosion of lithium under helium flux
 - \checkmark Retention of He in Li limiter observed
 - \checkmark Density reduced in Helium shots
 - ✓ Slow helium removal (outgassing) rate (20-100 s after plasma shot)
 - ✓ Retention was avoided by operating with walls heated to 50-100 C, and at 150 C helium recycling completely restored (did not work for D₂ even at 250-300 C)
 - ✓ Plasma Phys. Control. Fusion 48 (2006) 821–837
 - ✓ Plasma Phys. Control. Fusion 44 (2002) 955–977

T11-M results: helium interaction with lithium coated walls

Density reduced by operating with lithium limiter even in helium plasma discharges, presumably due to helium recycling reduction

Figure 17. Electron density evolution from shot to shot in discharges with high initial temperature at lithium limiter (about 500°C); helium taken as working gas.

Outgassing of helium is observed after a plasma discharge for 10-100 s

Figure 15. The behaviour of the gas pressure (He) in the tokamak vacuum vessel after the He discharge.

NSTX helium diagnostics and analysis

- Spectroscopy:
 - ✓ He I ionization potential 24.6 eV, He II ion. pot. 54.4 eV
 - ✓ Midplane He EIES with He II (4686 A) filter He II ion influx
 - ✓ Lower divertor 1D cameras with He II (4686 A) filter He II ion influx
 - ✓ Midplane ERD spectrometers, He II (4686 A) line He II ion density (using atomic emission rates from ADAS), He II ion temperature, rotation
 - ✓ VIPS spectrometer He I, He II ion flux, temperature
 - ✓ SPRED spectrometer relative He influx
- Presently using ADAS data for interpretation -->
- However, need confirmed MPTS data to interpret measurements

Preliminary results indicative of helium accumulation throughout LITER campaign

- Did not observe He accumulation in LITER experiments in 2006
- In 2007 LITER was evaporated throughout plasma discharges and in He GDC between discharges
- Apparently trapped helium in walls

NSTX experience in FY2007 is similar to FY2002 experience with Ne GDC + Boro

- Boronization was performed after Ne GDC
- Neon interacts with solid surface through attachment (adsorbtion) and implantation
- Neon spectral lines seen in SPRED spectra (left figure, before and after)
- Neon traces observed in plasmas over one week of operations (right figure - neon vs shot number for ~ 8 days following NeGDC+Boro)

Backup: S/XB technique is used to infer ion influx from spectroscopic measurements

$$\Gamma_{ph} = \int_{x_1}^{x_2} n_i \; n_e \; X \; B \; dx$$

- Technique originally developed by L. C. Johnson & E. Hinnov, and further by A. Kallenbach
- Used for deuterium and impurities

$$\frac{\partial n_i}{\partial t} + \frac{\partial}{\partial x}(v_i n_i) = S^{i-1} n_e n_{i-1} - S^i n_e n_i$$

$$\Gamma_{ph} = -\frac{X B}{S^i} \left(v_i \ n_i |_{x_1}^{x_2} - \int_{x_1}^{x_2} S^{i-1} n_{i-1} \ n_e \ dx + \int_{x_1}^{x_2} \frac{\partial n_i}{\partial t} \ dx \right)$$

$$\Gamma_i = -v_i \, n_i |_{x_1}^{x_2} + \int_{x_1}^{x_2} S^{i-1} n_{i-1} \, n_e \, dx$$

$$\Gamma_i = \frac{S}{X B} \Gamma_{ph}$$

- 1D viewing geometry
- x₁-recycling / erosion boundary, x₂ - detector location
- Recombination neglected
- Excitation and ionization occur in the same volume
- Steady-state condition

V. A. Soukhanovskii, NSTX Lithium-fest, 9 August 2007, Princeton, NJ 7 of 6

