

PF1A upgrade physics review

Presented by D. A. Gates With input from J.E. Menard and C.E. Kessel 10/27/04

Outline

- History how did we get here?
 - What were the limitations of the old PF1A?
- Physics optimization for target equilibrium
- Do we give anything up with the change?
 - and if so, what?
 - Survey of equilibria available with the new coils
- Summary

PF1A upgrade product of 5 yr. plan process

- Goal was to find an MHD stable 100% non-inductively sustained scenario w/ f_{bs}
 ~ 70% at 40% β_t
- Unable to find scenarios/equilibria that satisfied requirements with original coil set (Kessel/Menard)
- Expectation was a requirement of simultaneous high κ and δ

High κ , δ not compatible with old PF1A

- For $\kappa \sim 2.4$, as δ is increased, outer squareness decreases
- For δ ~ 0.8, as κ is increased, second x-point forms
- Not conducive to MHD stability
 - Also not easily realized equilibria
- Problem is solenoid like shape of PF1A
 - Lots of field on the ends of the coil, little on the sides

Proposal to modify PF1A

- Based on observation that PF1A capable of making high δ at lower κ when plasma height is near the bottom of the PF1A coil
- Original proposal was to \mathbb{R}° make 2 coils to maintain low κ high δ capability
 - No room for leads
 - proposed shifting present coil away from midplane

Shot= 108989, time= 270ms

Final coil design

- Single ~half-height coil design located near the upper half of the original PF1A
- > Half as many turns (20 vs. 48) but more current (24kA vs 15kA) gives 2/3 amp-turn rating
 - Does not appear to limit operation (more later)

PF1A upgrade required for β_T =40%, f_{NI} = 100%

Steady State Scenario

Time histories of the plasma density, temperature current for the fully non-inductive high β scenario with TSC

TSC used to demonstrate full time dependent non-inductively sustained scenario, consistent with transport and MHD stability and available external current drive (assuming EBW available)

n(0), nL, nV, /m^3 25 n(0) 20 nL . nV æ 420 Fe,i(0), eV IOI 3000 200 electron 100 100000 total 80000 bootstrap 60000 NBCD ģ 4000 20000

time, s

STX

C. Kessel 5 yr. plan

Profiles indicate future challenges

- Profiles of parallel current, loop voltage, temperatures, density, safety factor and thermal diffusivities for fully non-inductive high β scenario with TSC
- Requires shape control for high β
- Also requires density control for non-inductive current

C. Kessel 5 yr. plan

What does PF1A change imply for shape flexibility?

VSTX δ scan - Old PF1A δ scan - New PF1A δ scan gives 1.5 1.5 much better 1.0 1.0 shapes at high K 0.5 0.5 Squareness • z (m Z (m) 0.0 0.0 increases with increasing δ -0.5 -0.5 unlike with -1.0 -1.0 previous PF1A -1.5 -1.5 coil 0.5 1.0 1.5 1.5 0.0 0.0 0.5 1.0 R (m) R (m)

PF1A upgrade memo - D. Gates

Equilibrium behavior

As δ is scanned, q(95) increases by 50% with new PF1A relative to the old PF1A scan

- Increased MHD stability

- Plasma parameters for scan
 - $-I_p = 1.0MA$ $-B_t = 3kGauss$ $-\beta_N = 6.0$

Low κ , high δ inaccessible with new PF1A

- Direct consequence of upgrade
- Could be repaired if deemed necessary by addition of second ^(E)_N coil (lower half of old PF1A)
- PF1A current does not limit shape hits PF2 limit first

Coil currents from κ scan

• PF2 is limiting coil (for this scan)

1.90 2.00 2.10 2.20 2.30 2.40 2.50

Why now?

- Reduction in control system latency increased achievable κ
 - No further technical barrier to shape control for 5 year plan target equilibrium
- Center stack was removed early for additional TF repair
- Modification moved up to take advantage of opportunity

Vertical stability diagram showing improved operating space for NSTX in 2004

ISTX

Benefits of increased κ confirmed

- Simultaneous doubling of β_t (pulse averaged) and 50 % increase in normalized pulse length
- Increase correlates strongly with high κ

Summary

- PF1A upgrade enables predicted 100% noninductive operation with $f_{bs} \sim 70\%$ and $\beta_t \sim 40\%$
 - Indicates n=1 with wall stability for $\beta_N > 9$
 - No wall limit $\beta_N \sim 6$
 - (Also requires EBW and density control)
- Plasma vertical position control improvements have removed the major technical barrier to achieving this goal
- Reduction in operating space is tolerable – Give up low κ , high δ regime