

Challenges for a Diamagnetic Measurement in NSTX

- Poloidal breaks for CHI prevent using internal loop for toroidal flux
 - Breaks allow rapid penetration of toroidal flux for external loop, but
- No room in center stack for loop with adequate isolation and stability
- Try using the TF coil itself to measure flux displaced by plasma
 - Method used on PDX [P. Thomas, report PPPL-1979 (1983)]

$$N_{TF}\phi_{d} = -\int_{0}^{t} V_{TF}dt' + L_{TF}I_{TF} + \int_{0}^{t} R_{TF}I_{TF}dt' + \sum_{j} M_{TF:j}I_{j} + \sum_{PF} M_{TF:PF}I_{PF}$$

 N_{TF} : number of turns in TF coil (36)

 V_{TF} , I_{TF} : coil terminal voltage and current

 L_{TF} , R_{TF} : coil inductance and resistance (as functions of time)

 $I_{PF}, M_{TF \cdot PF}$: PF coil currents and their mutual inductances to the TF

 I_j , $M_{TF:j}$: Currents in structure driven by dI_{TF}/dt and mutual inductances

- $\phi_d \sim 0.1 \text{Wb}$ while $L_{TF}I_{TF} \sim 200 \text{Wb}$ and $\int R_{TF}I_{TF}dt' \sim 150 \text{Wb}$ in a 0.4s pulse
 - Very accurate compensation and modelling of the TF is needed

NSTX Toroidal Field Coil Circuit and Diagnostics

Precision DC current transducers make measurement possible

Analog Circuit Integrates Coil Voltage and Removes First-Order Self-Inductive and Resistive Flux Terms

- All input signals received differentially
- High stability components used throughout

Thermal Resistance Change of TF

◆ Adiabatic resistive heating of conductor carrying current I(t) (A)

$$R(t) = R(0) \exp\left[\frac{\alpha}{SA^2} \int_0^t I^2(t')dt'\right]$$

R(t): resistance; α (Ω mC⁻¹): temperature coefficient of resistivity; S ($Jm^{-3}C^{-1}$): volume specific heat; A (m^2): cross-section area.

- Inner legs of TF coil can rise from 10°C to 90°C during a TF pulse
- Causes non-linear increase in resistive flux during TF flattop

$$\phi_{res}(t) = \int_0^t I_{TF}(t') \left\{ R_{TF0} + R_{IL0} \left[\exp\left(4.5 \times 10^{-11} \int_0^{t'} I_{TF}^2(t'') dt'' \right) - 1 \right] \right\} dt'$$

- Must also account for effects of:
 - Water already in the cooling channels (\sim 6% decrease in ΔR_{TF})
 - Inflowing cooling water (~4% × t_{pulse}[s] decrease)
 - Diffusion of heat into insulation (\sim 4% \times $\sqrt{t_{pulse}}[s]$ decrease)
- Fit to data implies ΔR is about 90% of adiabatic expectation

PF Couplings Measured in Single-Field Test Shots

Uncertainty of 2mWb Achieved for Diamagnetic Flux in Combined TF/PF Shots During TF Flattop

Drift during TF rampdown caused mainly by power supply imbalance

In Plasma Shots, Fit Residual Resistive TF Flux During TF Flattop When Plasma Current Absent

♦ Fit coefficient of resistive flux varies by about 1% with temperature of air-cooled buswork; coefficient of inductive flux varies by <0.1%