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NSTX

Wall stabilization physics understanding enhanced by 
use of upgraded capabilities

• Motivation
Resistive wall mode (RWM) leads to rotation damping, β collapse
• Original NSTX RWM observed and published in 2001

Use new diagnostic and control capabilities to examine physics detail

• Outline
Experiments examine unstable, resonant, and stable high βN regimes
Significant mode detail observed with new/upgraded diagnostics
Enhanced experimental capability with initial RWM coil
Equilibrium reconstruction with rotation (Ωφ/ωA up to 0.48)
Theory comparison to experiment reveals new insight

…conducting wall stabilization research is flourishing! 



NSTX

Theory provides framework for wall stabilization study

• RWM / external kink “branches” are eigenmodes of the system

• Examine stable/unstable operating regimes and resonances

Fitzpatrick – Aydemir (F-A) RWM dispersion relation
Nucl. Fus. 36 (1996) 11
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plasma inertia dissipation mode strength wall response wall/edge coupling

plasma rotation S* ~ 1/τwall poloidal mode numbers ~ βN
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Unstable RWM dynamics follow theory

• F-A theory / XP show
mode unlock/ rotation 
can occur during 
mode growth
“RWM branch” phase 
velocity in direction of 
plasma flow
growth rate, rotation 
frequency ~ 1/τwall

• n=1-3 unstable modes 
observed on new 
sensors

modes are ideal no-
wall unstable (DCON) 
at high βN

• Low frequency tearing 
modes absent
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NSTX

RWM rotation damping differs from other modes

• Core rotation damping when 1/1 
mode onsets

leads to “rigid rotor” plasma core

• Clear momentum transfer across 
rational surface near R = 1.3m

• Global rotation damping by RWM
1/1 tearing mode is absent

• Edge rotation does not halt
consistent with neoclassical 
toroidal viscosity ~ δB2*Ti0.5

testing ideal δB as perturbation
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NSTX

• Theory / XP show
Time-dependent error field yields 
new resonance

• may be responsible for mode 
trigger

Mode rotates counter to plasma 
rotation – F-A theory shows as 
“kink branch”

• n=1 phase velocity not constant 
due to error field

Rough calculation of ωf/2π ~ 350 
Hz; agrees with PF coil ripple
Initial results – quantitative 
comparison continues

Resonance with AC error field possibly identified
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Resonant field amplification increases at high βN
• Plasma response to applied 

field from initial RWM coil pair
Conducted pulsed field and 
initial MHD spectroscopy XPs

• DIII-D RFA: 0-3.4 G/kA-turn

• Increase in RFA with increasing 
βN consistent with DIII-D

thought to be inconsistent with 
F-A RWM theory (A. Garofalo, 
PoP 2003)

• AC error field ~ cos(ωf t)
significantly shifts the error field 
resonance away from stability 
boundary
finite ωf

2 resonances might fill 
amplification “gap” between 
modified error field resonance 
and stability limit
consequently, must be careful 
to include the effect of active 
error field resonances in RFA 
calculationsΩφ
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Between-shots equilibrium reconstruction with rotation 
introduced in 2004 (EFIT)*• Data

51 radial channel, ∆t =10ms CHERS data generated between-shots
• Dynamic (rotational) pressure Pd(ψ,R)|z=0

• Pi available – reduces error bars on “partial kinetic” P(ψ,R)|z=0

Significant upgrade of divertor magnetics set / vessel voltage monitors
• Reduces uncertainty in X-point position and plate currents

Over 350 total measurements are used per time point
• Allows fit with 21 free basis function parameters and no artificial constraints
• One or two artificial constraints may be necessary to reduce noise

Over 11,000 shot*times run – further testing still needed for 100% reliability

• Physics constraints
Flux iso-surface constraint

• Use Te = Te(ψ(R)|z=0) directly from Thomson scattering data - rapid analysis
required to insure self-consistent solution with toroidal rotation

• Better flux surface / q profile determination
• Other data (e.g. soft X-ray emission) can be used as constraint

*in collaboration with Lang Lao (GA), Z. Cheng (IPPCAS) 
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Significant separation of magnetic axis and peak pressure

• Vφ broadens P profile
simple estimate for Pfast

completing testing of 
diagnostic consistency

• (Rpmax– Raxis)/a = 11%
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Significant progress in high βN wall stabilization research

• Unstable, resonant, and rotationally stabilized plasmas have been created and 
global modes diagnosed

• Greater insight on RWM physics critically aided by diagnostic upgrades
new internal magnetic sensors

higher time and spatial resolution CHERS for Ti, Ωφ (rotation damping)

two-toroidal position USXR data taken during RWM experiments

• Initial RWM coil pair already used for first RFA experiments

• Between-shots equilibrium reconstruction with rotation capability now available

• NSTX on schedule to perform active stabilization XPs in 2005
Full RWM coil installation almost completed now

RWM coil power supply to be ready for start of run

Key goal – run first NSTX active feedback stabilization experiments in 2005! 


