

Supported by

UT-K Collaborative Program on NSTX for 2012-2015

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **NFRI KAIST** POSTECH ASIPP **ENEA**. Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

Main objective of UT-K program is to evaluate the dependence of the effectiveness of lithium coatings on poloidal deposition asymmetries

- Q: Plasma performance improves nearly continuously with lithium coatings – why? (nominal divertor coating 'thickness' scan went well beyond ion implantation depth)
- Hypothesis: areas of lower deposition (e.g. center stack, upper divertor) take longer to 'saturate'
- Hardware Elements: 20 new spectroscopic sightlines of upper divertor and center stack; dual band IR of center stack and upper div.
- Modeling: detailed dynamical PFC response to measured plasma fluxes

Maingi, PRL 2011; Maingi, NF 2012

Previous NSTX LiTERs had toroidal and poloidal asymmetries in deposition thickness

Program relies on strong collaboration between UT-K, ORNL, and LLNL

- Lower divertor (region #3) well covered with existing DIMS (LLNL -Soukhanovskii) and 30-channel filterscope array (ORNL)
- We plan to add 20 diagnostic sightlines in regions #1 and #2 to measure lithium and impurity emission from surfaces, using either filterscopes, special ORNL compact spectrometer arrays, or time-sharing on a spectrometer
- We also plan to measure the PFC temperature and heat flux in regions 1 and 2 with dual-band IR cameras

🔘 NSTX

Time-table and Annual Milestones

Milestone	Due Date		
Identify postdoctoral candidate	06/12	✓	A. Bortolon
Purchase components of dual band adapter for IR camera	09/12]
Bench test dual-band adapter with borrowed IR camera	12/12		
Assemble dual-band IR camera system for implementation in NSTX-Upgrade	03/13		
Complete engineering design of spectroscopic sightlines	06/13		
Purchase components for spectroscopic studies (fibers + lenses)	09/13		
Complete analysis of existing lithium data from NSTX	12/13		
Implement additional diagnostic sightlines in NSTX-Upgrade	03/14		
Identify new postdoctoral candidate or extend existing postdoc, if possible; may	06/14		
opt instead for a graduate student and Ph. D. project			
Purchase dedicated IR camera for upper divertor; start materials response	09/14		
modeling			
Document first data with upper divertor IR camera and new diagnostic	12/14		
sightlines, if NSTX-Upgrade remains on schedule for first plasma			
Fully implement first dual-band IR camera in NSTX-Upgrade	03/15		
Apply SOLPS to newly acquired data; Purchase components of second IR	06/15		
camera for center stack region			
Fully implement second IR camera	09/15		
Continue materials response modeling, using SOLPS plasma solution	12/15		
Assess effect of poloidal variations in lithium deposition on plasma	03/16		
performance			