

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Review of NSTX-U research milestones R18-6 and R19-4

Devon Battaglia, Dan Boyer, Pat Vail, Egemen Kolemen, Francesca Poli, Doohyun Kim, Stefan Gerhardt on behalf of the ASC TSG

> FY2018-19 Research Milestone Review May 25, 2017

Proposed changes to milestones

- R18-6 Simulation framework development for NSTX-U high-performance scenarios
 - Divide original milestone over FY18 and FY19
 - Provide greater detail on tasks in each fiscal year
 - Increased emphasis on connection to MAST-U collaboration
 - Add startup modeling (planned for FY17 summer)
- R19-4 Commission physics and operational tools for obtaining high-performance discharges in NSTX-U
 – Defer to FY20

Review of R(17-5): Analysis & modeling of current ramp-up dynamics

- Evaluate elongation limits during ramp-up phase using data and calculations
 - What factors limit the elongation before, during and after diverting?
 - Identify growth rate of vertical instability to predict controllability of high-κ shapes in ramp up
- Establish the dependence of the L-H transition on density, plasma shape, etc. to inform modeling of threshold criteria and scenario targets
- Perform stability analysis of experimental and modeled discharges to identify MHD limits during ramp-up
- Prepare for R18-6: work through technical issues for TOKSYS framework with GA
- Prepare for R18-6: begin TRANSP analysis of ramp-up phase

R(18-6): Develop simulation framework to optimize *breakdown and* ramp-up *in STs*

- Develop TOKSYS framework with free-boundary equilibrium solver in plasma model
 - Reproduce ramp-up cases from NSTX-U with fixed profile evolutions, plasma inductance, resistance, etc.
 - Evaluate if observed shape evolutions are reproduced using PCS algorithms
 - Requires wall, power supply, magnetic diagnostic models (FY17)
 - Implement the same for MAST-U (FY18)
- Apply model to gain insight into shape limits and control
 - Evaluate vertical stability limits during ramp-up in simulation
 - Consider MAST-U and NSTX-U with both pre- and post-recovery designs
 - Use simulation tool to optimize shape control during ramp up
 - Most interested in control around time of diverting (avoid "the bobble")
 - Evaluate trade-off between rtEFIT resolution / constraints and computational time

NSTX-U

R(17-5) Q2 Milestone Status, D.J. Battaglia, March 31, 2017

R(18-6): Develop simulation framework to optimize *breakdown and* ramp-up *in STs*

- Investigate NSTX-U ramp-up dynamics using TRANSP
 - Identify range of NSTX / NSTX-U cases to characterize
 - Use equilibrium and TRANSP results to evaluate MHD and fast ion stability
 - Investigate impact of changes in NBI heating mix on stability with fixed equilibrium and T, n, Z_{eff} profiles
 - Which beams and shapes are best for startup?
- Develop and evaluate start-up calculations for NSTX-U and MAST-U

Figure 2. Plasma current traces obtained during a systematic scan of the plasma current ramp rate.

NSTX-U breakdown calculations

R19-?: Optimize ramp-up scenarios and control for spherical tokamaks

- Extend TOKSYS to use reduced models for current and pressure profiles and in L- and H-mode
 - Investigate scenario and control optimization for ramp-up with early heating and examine resiliency to timing of L-H transition
- Extend TRANSP simulation to employ more physicsbased models
 - Evolve T_e and T_i based on transport model or neural-net model found to best reproduce experimental data
 - Use neutral fueling feedback in TRANSP to match density request, if available
 - Use free-boundary solver to optimize shape evolution

R19-?: Optimize ramp-up scenarios and control for spherical tokamaks

- Apply available tools to investigate impact of heating mix and timing
 - Experiments will ask for beams at different voltage combinations
- Investigate influence of early density on the ramp-up
- Evaluate the trade-offs in I_{p} ramp-rate
 - What are the stability limits?
 - What is the impact on shape and stability due to wall currents?
 - Apply MHD and fast-ion stability calculations to characterize stability boundaries in a range of cases
- Perform targeted experiments on MAST-U and NSTX-U

Original FY19 milestone should be deferred to FY20

- Evaluate wall-conditioning boron vs lithium in NSTX-U – Evaluate ELM-pacing for impurity control in ELM-free regimes
- Demonstrate optimize ramp-up scenarios for achieving high-elongation and large I_p
 Assess vertical stability at low-li, identify limiting mechanisms
- Re-optimize EFC and implement in control algorithm – Also, start active RWM feedback
- Evaluate stability limits and non-inductive fraction

Backup

FY18/19 Milestone modifications

- Google doc:
 - <u>https://docs.google.com/a/pppl.gov/document/d/1sY-dJ4M2e2xNhQ-B7AMjGFuwSOUqN9mBHn4r7cw8qQA/edit?usp=sharing</u>

H-mode flattop performance depends on the I_p ramp-up

NSTX fiducial had L-H transition before 150ms - I_i ~ 0.5, κ ~ 2.4 with P_{NBI} = 5.8 MW

- NSTX-U: progress in obtaining early L-H transition, higher I_p and κ -202946 \rightarrow 203679 \rightarrow 204112
 - Enabled by increase in P_{NBI}, improvements in shape control, EFC
- Access to higher I_p (> 1.6 MA) and κ (> 2.4) requires further ramp-up development during next run

