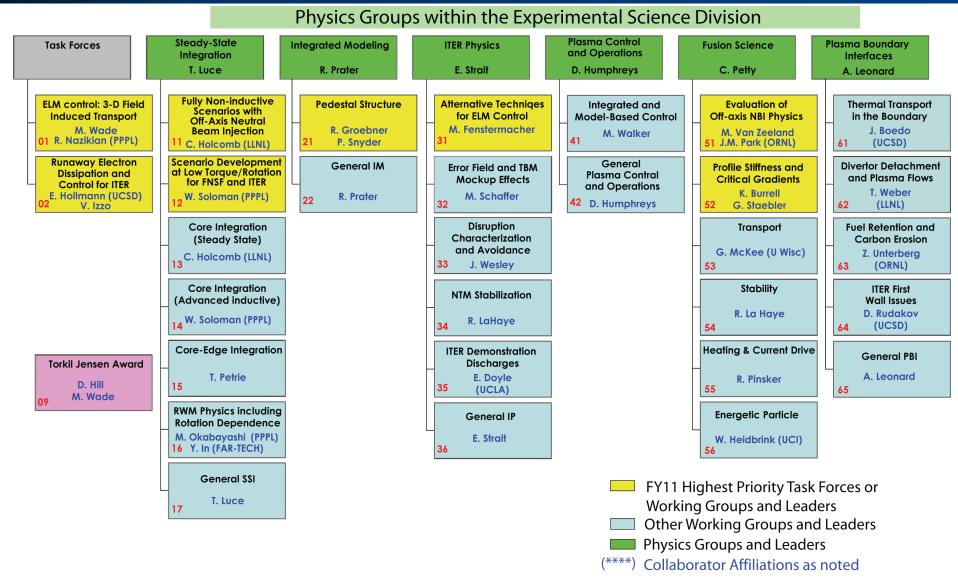
Opportunities for Research on DIII-D

by Rob La Haye

Presented at the
NSTX Research Forum
Princeton Plasma
Physics Laboratory

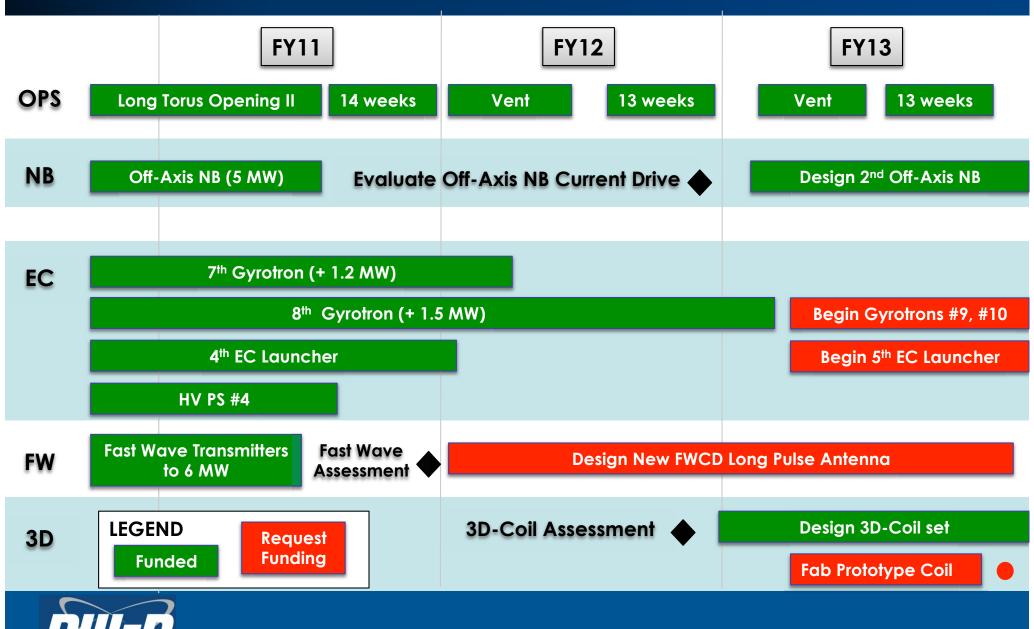
March 15, 2011



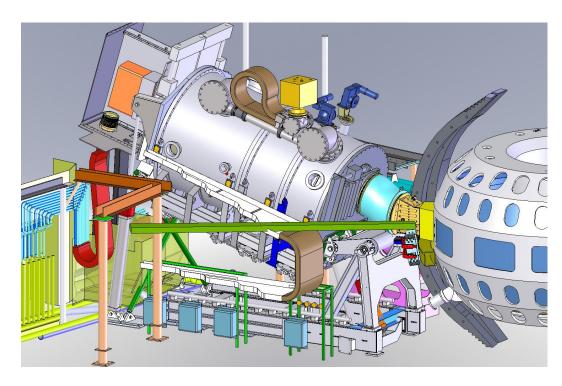
Key Research Areas Would Benefit from Enhanced NSTX Collaboration with DIII-D in Next Few Years

- Impact on ITER in near term
 - ★ ELM control, EF correction, disruption mitigation, for example
 - ... NSTX/PPPL strong on ELM pacing, 3D fields, EFC
- Research providing information for NSTX Upgrade
 - ★ Off-axis CD, "long pulse", fully non-inductive ops
 - ... increased electron heating
- Leveraging NSTX and DIII-D common strengths
 - ★ EF, RWM, fast ion physics, for example
 - ... pedestal structure 2011 JRT
 - ... electron particle transport 2012 JRT

Flow Diagram of Experimental Research Areas for 2011 (Contact Persons Noted)


14 Weeks Physics Operation Planned in FY2011, 13 Weeks in FY2012, 5 Year Plan to October 2013

	PROPOSED DIII-D FY2011 OPERATIONS SCHEDULE																										
Oct							Nov							Dec						Jan							
S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S
					1	2		1	2	3	4	5	6				1	2	3	4							1
3	4	5	6	7	8	9	7	8	9	10	11	12	13	5	6	7	8	9	10	11	2	3	4	5	6	7	8
10	11	12	13	14	15	16	14	15	16	17	18	19	20	12	13	14	15	16	17	18	9	10	11	12	13	14	15
17	18	19	20	21	22	23	21	22	23	24	25	26	27	19	20	21	22	23	24	25	16	17	18	19	20	21	22
24	25	26	27	28	29	30	28	29	30					26	27	28	29	30	31		23	24	25	26	27	28	29
31																					30	31					
	Feb Mar						•				Apr				May												
S	М	Т	8	۲	F	S	S	М	Н	V	Н	F	S	S	М	Н	W	Т	F	S	S	М	Т	W	Т	F	S
		1	2	3	4	5			1	2	3	4	5						1	2	1	2	3	4	5	6	7
6	7	8	တ	10	11	12	6	7	•	9	10	11	12	3	4	5	6	7	8	9	8	9	10	11	12	13	14
13	14	15	16	17	18	19	13	14	15	6	17	18	19	10	11	12	13	14	15	16	15	16	17	18	19	20	21
20	21	22	23	24	25	26	20	21	9	23	24	25	26	17	18	19	20	21	22	23	22	23	24	25	26	27	28
27	28						27	28	29	30	31			24	25	26	27	28	29	30	29	Н	31				
			Jun							Jul				Aug						Sep							
S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S
			1	2	3	4						1	2		1	2	3	4	5	6					1	2	3
5	6	7	8	9	10	11	3	Н	5	6	7	8	9	7	8	9	10	11	12	13	4	5	6	7	8	9	10
12	13	14	15	16	17	18	10	11	12	13	14	15	16	14	15	16	17	18	19	20	11	12	13	14	15	16	17
19	20	21	22	23	24	25	17	18	19	20	21	22	23	21	22	23	24	25	26	27	18	19	20	21	22	23	24
26	27	28	29	30			24	25	26	27	28	29	30	28	29	30	31				25	26	27	28	29	30	
							31																				
	Plasma physics Startup Ontion Vent																										


Oct								Nov							Dec						Jan						
S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	5
						1			1	2	3	4	5					1	2	3	1	2	3	4	5	6	Γ
2	3	4	5	6	7	8	6	7	8	9	10	11	12	4	5	6	7	8	9	10	8	9	10	11	12	13	ľ
9	10	11	12	13	14	15	13	14	15	16	17	18	19	11	12	13	14	15	16	17	15	16	17	18	19	20	Ŀ
16	17	18	19	20	21	22	20	21	22	23	Н	Н	26	18	19	20	21	22	23	24	22	23	24	25	26	27	Ŀ
23	24	25	26	27	28	29	27	28	29	30				25	26	27	28	29	30	31	29	30	31				L
30	31																										L
			Feb				Mar						Apr							May							
S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	M	Т	W	Т	F	3
			1	2	3	4					1	2	3	1	2	3	4	5	6	7			1	2	3	4	L
5	6	7	8	9	10	11	4	5	6	7	8	9	10	8	9	10	11	12	13	14	6	7	8	9	10	11	L
12	13	14	15	16	17	18	11	12	13	14	15	16	17	15	16	17	18	19	20	21	13	14	15	16	17	18	Ľ
19	Н	21	22	23	24	25	18	19	20	21	22	23	24	22	23	24	25	26	27	28	20	21	22	23	24	25	Ŀ
26	27	28	29			Ш	25	26	27	28	29	30	31	29	30				Ц.		27	Н	29	30	31		L
						Ш													Ц,				L	Щ			L
_		-	Jun	_	-		0		_	Jul	-	-		Aug							Sep						
S	М	Τ	W	1	F	S	S	М	Ι	W	Ι	F	S	S	М	Ι	W	Т	F.	S	S	М	Т	W	Т	F	3
	L	_	_	_	1	2	1	2	3	H	5	6	7		L		1	2	3	4							L
3	4	5	6	7	8	9	8	9	10	11	12	13	14	5	6	7	8	9	10	11	_	Н	4	5	6	7	L
10	11	12	13	14	15	16	15	16	17	18	19	20	21	12	13	14	15	16	17	18	9	10	11	12	13		Ľ
17	18	19	20	21	22	23	22	23	24	25	26	27	28	19	20	21	22	23	24	25	16	17	18		20	_	Ŀ
24	25	26	27	28	29	30	29	30	31					26	27	28	29	30	31		23	24	25	26	27	28	Ŀ
																			L.		30						L

New, Planned, and Proposed Hardware Upgrades Will Position DIII-D to Address Critical Science Issues

First Upgraded Beamline Will Provide 5 MW of Off-Axis Injection for Current Drive

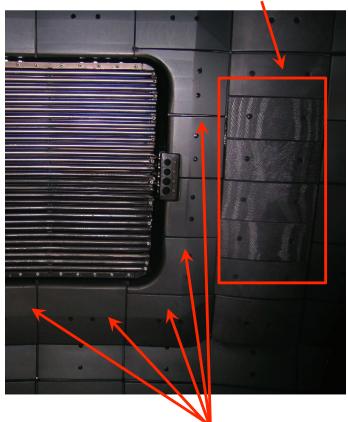
- Off-axis beam provides valuable tool to modify current, rotation, and heating profiles
 - avoid driving q(0) below 1

- Continuous adjustment of injection angle (0-16.5°)
 - Neutralization peak 40 cm below midplane
- Modified ion sources with stronger focusing successfully tested (June '10, Feb '11)
- Available for start of FY11 research campaign
- Decision to proceed with 2nd OANB (to 10 MW) will be made after evaluation in FY12
 - FY14-15 installation (LTO III)

NEUTRAL BEAMS

System #7: 1.2 MW Depressed Collector Gyrotron and All Subsystems Should Be Ready by Early FY12

- New tube updates existing design
 - CuCrZr replaces OFHC Cu for longer collector life
 - Improved mode convertor higher Gaussian content
- Vault expansion completed for gyrotrons #7 and #8
- New HV supply with 2 mod/regs for independent control of gyrotrons
- Dual launcher from PPPL for #7 and #8 will be installed in early FY12 (PPPL currently major collaborator on EC)



ELECTRON CYCLOTRON

New Fast Wave Hardware Enables Increased Coupling to H-mode Plasma

- In FY10, smaller outer gaps yielded
 ~20% increase in coupling/cm
- Antennas closer to plasma (FY11)
 - 0° & 180° antenna radial position adjustable 1 cm under vacuum
 - 285°/300° antenna moved 1cm closer
- New gas injection points adjacent to antennas added for improved plasma/ antenna coupling
 - 5-point distributed injectors at 285° (FY11)
 - Single point injectors at 0° & 180°
- Improved fault detector will allow ELMresilient operation of FW systems (FY11)

CFC limiter tiles

Multi-point gas injection ports

NATIONAL FUSION FACILITY

FAST WAVE

Welcoming Help in Fast Wave Systems

- Supporting antenna conditioning and tuning
 - ★ Operation and physics (strong PPPL collaboration already exists)
- Analysis and modeling high harmonic fast wave absorption cases

Assessment of fast wave coupling in H-mode to get additional electron heating (complementary to ECH) by October 2012

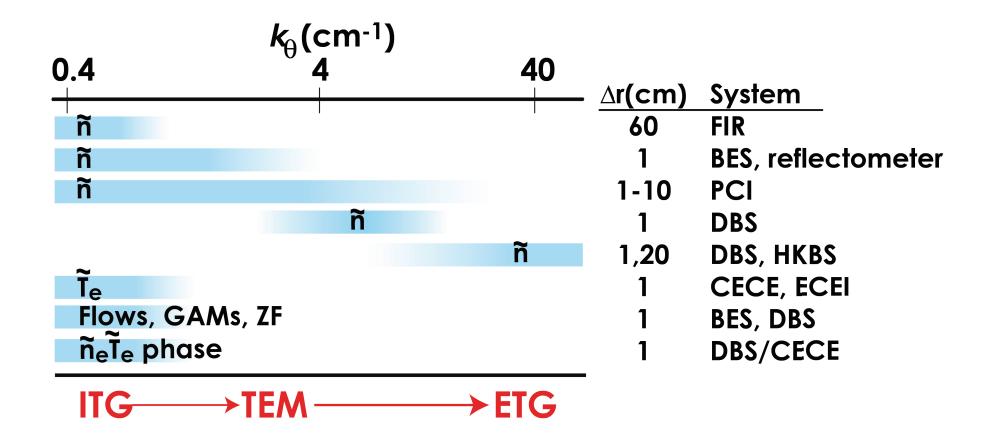
Many New and Upgraded Systems are Planned in Support of the Scientific Program

2011 2012 2013 Edge Thomson Upgrade X-pt SXR Neutrals /TALIF **Pedestal** Pellet Pacing (30Hz) Line Ratio $(n_e \& T_e)$ Lithium beam Upgrade X-pt SXR IR/visible 3D magnetics 3D fields (first phase) periscope Main Ion CER New technique Divertor Thomson Upg. IR/visible periscope 2D flows (upper and **Boundary Neutrals /TALIF** lower divertor) CP Langmuir Divertor T_i Fixed Langmuir probes swing probe upgrade Line Ratio $(n_e \& T_e)$: Under evaluation

Many New and Upgraded Systems are Planned in Support of the Scientific Program

2011 2012 2013 Shell Pellet Hard X-ray **Disruption** 3 color Interferometer spectrometer & Control Fast framing cameras upgrade **Rupture Disk ECEI** FILD-2 **Energetic** fast FILD upgrade **Particles** FIDA imaging upg. BES upgrade MIR NPA upgrade ECEI ▲ UF-CHERS **Transport** Main Ion CER CER poloidal rotation upgrade Thomson scattering upgrade

: Planned


: Under evaluation

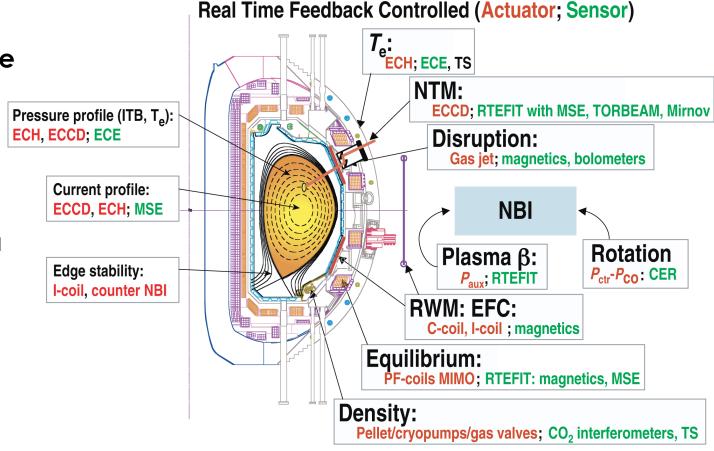
Welcoming Help in Diagnostic Areas

- Imaging diagnostics (relocating NSTX cameras to DIII-D?)
 - ★ IR cameras for divertors, visible light cameras for deuterium (FIDA) or lithium beams (BES)
 - ★ SXR imaging of magnetic structures due to 3D
- Li beam and Motional Stark Effect
 - ★ Equipment for narrow wavelength filtering of polarized light
- Thomson Scattering support
- EFIT development
 - **★ 3D** (PPPL strong here)
 - ★ Runaway electron equilibria

Broad Range of Fluctuation Diagnostics used in Validation Studies of Turbulence and Transport Simulations

Welcoming Help in Transport

- Investigations of core energy and particle transport
 - ★ Extend work on energy transport to electron-scale modes (TEM and ETG)
 - ... begun for 2012 Joint Research Target
 - ★ Validate transport models (e.g. TGLF) and simulations (e.g. GYRO)
 - ... participate in new experiments and analyze data
- Transport of fast ions during MHD events energetic particle instabilities (particularly with off-axis NBI)
 - **★ Strong PPPL collaboration already exists**



Real-Time Control of Key Plasma Properties Enabled by Extensive Set of Control Tools

Real-time q-profile

Real-time boundary display

 Real-time plasma rotation control

Welcoming Help in Control/Stability/Scenario/Boundary (Including Divertor 3D Footprints)

- Plasma control system (PCS)
 - ★ MIMO evaluation, profile control implementation, programming
 - ★ Off-normal/fault response algorithm development, disruption physics
 - **★** Participation in physics operations team (10 ~12 now)
- Steady state integration (SSI)
 - ★ Kinetic effects on RWM, error correction/RWM feedback, IPEC modeling
 - ... power system development, upgrades
 - * Advanced inductive and steady-state scenario development
- Boundary (including divertor footprints and features)
 - ★ Pedestal exps, data reduction, modeling and analysis (2011 JRT)
 - **★** Optimization of detached divertor operation
 - ... Snow flake, Super-X control
 - ... Maintenance of high pressure pedestal
 - ... Scaling of detachment onset

Scientific Milestones Seek to Take Advantage of New Capabilities to Support ITER and Steady State

	2011	2012	2013
Base	14 weeks	13 weeks	10 weeks
	176: Pedestal model validation (JRT)	179: High performance with OANB and	184: Quantify plasma response to 3-D fields
	177: First experiments with 2MW off-axis NBI	increased EC 180: Alternate ELM control	185: Techniques for reliable operation near limits
	178: ELM suppression and3-D field inducedtransport	techniques 181: Core transport model validation (JRT)	186: Impact of ITER-like conditions on high performance plasma
Increr	mental	+2 weeks	+3 weeks
		182: Runaway electron controlled-dissipation methods for ITER	187: Radiative stability of partially-detached divertor discharges
		183: Advanced scenarios with divertor heat flux solutions	188: Non-nuclear ITER operating scenarios

Summary: Opportunities for Research on DIII-D

- Upgrades to our Heating and Current Drive Systems (NB, EC, FW)
 will provide increased power and enhanced current profile control
 - ★ in conjunction with upgraded systems for diagnostics and control
- Assessments of fast wave effectiveness, off-axis NB current drive, and 3D-field physics will drive critical hardware upgrade decisions in FY11 and FY12 (FY13 begins October 2012)
 - ★ pointing to new 5-year plan beyond September 2013
- Collaboration is actively encouraged and welcomed
 - ★ Opportunities to make significant advances by leveraging DIII-D and NSTX distinctive strengths and unique capabilities

