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NSTX Upgrade will contribute strongly to toroidal plasma science 

and preparation for a fusion nuclear science (FNS) program

•NSTX:  
– Provide foundation for ST physics and performance and support ITER

•NSTX Upgrade:
– Study high beta plasmas at reduced collisionality

• Vital for understanding confinement, stability, start-up, sustainment

– Assess full non-inductive current drive operation
• Needed for steady-state operating scenarios in ITER and FNS facility

– Prototype solutions for mitigating high heat, particle exhaust
• Can access world-leading combination of P/R and P/S

• Needed for testing integration of high-performance fusion core and edge

•NSTX Upgrade contributes strongly to possible next-step STs:
– Plasma Material Interface Facility (PMIF)

• Develop long-pulse PMI solutions for FNSF / Demo (low-A and high-A)

• Further advance start-up, confinement, sustainment for ST

– Fusion Nuclear Science Facility/Component Test Facility (FNSF/CTF)
• Develop fusion nuclear science, test nuclear components

– Pilot Plant usion Nuclear Science Facility
• FSNF mission + power-plant relevant maintenance + Qeng ~ 1

PMIF (NHTX)

NSTX

NSTX-U

FNSF (ST-CTF) Pilot Plant
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Access to reduced collisionality is needed to understand  

underlying causes of ST transport, scaling to next-steps

• n* also impacts RWM stability, rotation 
damping, range of other physics

Normalized electron collisionality ne*  ne / Te
2

ITER BtE (e-static g-Bohm)  r*
-3 b0 n*

-0.14 q-1.7

Petty et al., PoP, Vol. 11 (2004)

• Higher toroidal field & plasma current enable access to higher temperature

• Higher temperature reduces collisionality, but increases equilibration time

• Upgrade: Double field and current + 3-5x increase in pulse duration to 

substantially narrow capability gap  3-6x decrease in collisionality

ITER-like 

scaling

ST-CTF 

?

constant 
q, b, r*

NSTX Upgrade

• Future ST’s are projected to operate at      
10-100x lower normalized collisionality n*

• Conventional tokamaks observe weak 
inverse dependence of confinement on n*

• NSTX observes much stronger scaling vs. n*
– Does favorable scaling extend to lower n* ?
– What modes dominate e-transport in ST ?

• Electrostatic or electromagnetic?
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Increased auxiliary heating and current drive are needed to 

fully exploit increased field, current, and pulse duration 

•Higher heating power to access high temperature and b at low collisionality

– Need additional 4-10MW, depending on confinement scaling

• Increased external current drive to access and study 100% non-inductive

– Need 0.25-0.5MA compatible with conditions of ramp-up and sustained plasmas

•Upgrade: double neutral beam power + more tangential injection

– More tangential injection  up to 2 times higher efficiency, current profile control 

– ITER-level high-heat-flux plasma boundary physics capabilities & challenges

• q(r) profile very important for 

global stability, electron transport, 

Alfvénic instability behavior

– Variation of mix of NBI tangency 

radii would enable core q control

Use 4 of 6 sources

ENBI=90keV, PINJ = 8MW

fGW=0.95

Normalized minor radius

RTAN [cm]
__________________ 

50,  60, 70, 130
60,  70,120,130
70,110,120,130IP = 725kA, BT=0.55T,  bN = 6.2, bT = 14%

H98y2 = 1.2, fNICD = 100%, fp = 73%
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Magnet operation at ~1T (vs. 0.55T)      

within a factor of 2 of next-step STs 

2nd NBI with 5 MW, 5s at larger RTAN 

Present CS

New center stack for 1T, 2MA, 5s 

New CS

R0 /a = 1.25-1.3   1.5-

1.6

0.2

0.4

0.6

0.8

1.0

BT 

[Tesla]

tPulse (sec)

1 MA

0.75 MA

IP  2 MA

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Present NBI
RTAN =

50,60,70cm

2nd NBI
RTAN =

110,120,130cm  

2nd NBIPresent NBI

NBI current drive profiles [MA/m2]

Normalized minor radius

Up to 2 times higher NBI current drive 

efficiency, and current profile control 

NSTX Upgrade will bridge the device 

and performance gap toward next-step STs
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NSTX Upgrade will extend normalized divertor and

first-wall heat-loads much closer to FNS, pilot regimes

Device heat-flux parameters

DIII-D

FDF (III)

NSTX-U
NSTX-U (21MW)

FNST (II)

FNST (II)

ITER
JET (DT)

JT-60SA

KSTAR

EAST

ARIES-AT

FNST (IV)

FNST (I) / ST-PMIF

C-Mod

FDF (II)

FDF (I)
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2
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 CD-0 Approved - February 2009

– Approval of mission need

– Begin Conceptual design

 Conceptual Design Review - October 2009

 CD-1 Approved - April 2010

– Approval of Alternate selection and cost range

– Begin Preliminary Design

– Begin Capital costing

 Preliminary Design Review - June 2010

 CD-2 Approved - December 2010

– Approval of performance baseline

– Technical, cost, schedule baseline frozen!

 Final Design Review  - June 2011

 Award critical and long lead procurements - 2012

 Complete fabrication, assembly, test of TF/OH – 2013

 Install NBI Vessel Cap, 2nd NBI, new centerstack – 2014

 Integrated system test, complete project – 2014

NSTX Upgrade Project 
Good Progress to Date

7
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Near-term NSTX Programmatic Schedule

• Mar. 15-18, 2011 - Annual research forum for FY11-12 run

– You are invited to submit proposals!

– Web URL will be:  http://nstx-forum-2011.pppl.gov/

• Jun. – Sep. 2011 - Finish FY2011 run (10 more run weeks)
– Research Priorities:

• Improve understanding of pedestal structure – joint with C-Mod, DIII-D, theory

• Measure ion-scale (using new BES) + electron-scale turbulence

• Optimize plasma stability and control at increased aspect ratio and elongation

• Characterize performance of high flux expansion “snow-flake” divertor

• Assess pedestal transport and stability response to 3D fields for ITER

• Oct. 2011 to end of Feb. 2012 - FY2012 run (10 run  weeks)
– Research Priorities:

• Assess core transport predictive capability - joint research with C-Mod, DIII-D

• Measure relationship between Li-conditioned surfaces and plasma behavior

• Assess confinement, heating, and ramp-up of CHI start-up plasmas

• Access stable high-performance scenarios with reduced density and collisionality

• April 2012 - Begin NSTX Upgrade outage

8
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Collaboration

• NSTX researchers will become more available for 

collaboration during Upgrade outage (2012-14)

• We are working now to identify collaboration 

opportunities on a range of facilities:
– DIII-D, C-Mod, KSTAR, EAST, …

• KSTAR collaboration opportunities available at: 
http://nstx.pppl.gov/DragNDrop/Program_PAC/Other_facility_plans/KSTAR_Research_Topics_2011-0302_YKOH_v2.pdf 

9
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NSTX Mission Elements

NSTX NSTX-U

Fusion Nuclear 
Science Facility 

(FNSF)

Plasma Material 

Interface 

Facility (PMIF)
Pilot 
Plant

ITER

•Understand/exploit unique ST parameters

– High heat flux for novel divertor and PMI studies

– Low A, li and high b, k, vfast/vA for stability, transport

– Role of NSTX Upgrade:
• Prototype methods to mitigate very high heat/particle flux

• Study high beta plasmas at reduced collisionality

• Access full non-inductive operation for FNSF applications

•Extend understanding of tokamak / ITER

– Develop predictive capability for ITER/FNSF/Demo

•Establish attractive ST operation

– Utilize ST to close key gaps to Demo

– Advance ST as fusion power source
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NSTX is addressing multi-scale transport issues 
critical to future devices – ITER and next step STs

High-k Tangential Scattering

• High radial resolution for electron-

gyro-radius scale turbulence (f 3MHz)

• Low-k fluctuations decrease after transition to H-Mode

• Fluctuations increase after H L back-transition

•D. Smith, U. Wisconsin

12

Low-k BES
(Beam Emission 

Spectroscopy)

m-TEARING

1 10 100

k  (cm-1)

k rs

0.1 1 10





ETGITG/TEM

• BES also contributing to energetic particle research

R=142cm
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NSTX is beginning to unravel the mystery of the 

collisionality dependence of ST energy confinement

Previous NSTX (and MAST) 

experiments exhibit nearly 

inverse dependence of BtE on 

collisionality

ITER-like 

scaling

ST-CTF

?

constant 
q, b, r*

NSTX Upgrade

NSTX

ne*  ne / Te
2

New high-k scattering measurements show 

fluctuation levels apparently increase at lower n*

Is m-tearing playing major role in ST e-transport?

Non-linear GYRO simulations of lower-k

m-tearing predict ce proportional to n*

r/a ~ 0.6
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Improvements in stability control techniques have 

significantly reduced RWM instability at high bN and low li

• High normalized beta bN = 6–7 and high bN / li = 10-14 routinely accessed

• Improvements:  sensor AC compensation + combined BP+BR + state-space controller

• Disruption probability for βN / li > 11 plasmas reduced from ~50% to ~14% 

14

IAEA: S. Sabbagh, Columbia U
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New RWM state space controller sustains high bN

~3000+ 

states

Full 3-D 

model
RWM

eigenfunction

(2 phases,    

2 states)

)ˆ,̂( 21xx
3x̂

4x̂ Nx̂

truncate

State reduction (< 20 states)

State space feedback with 12 states

 Controller can compensate for 

wall currents

 Including mode-induced 

current

 Examined for ITER

 Successful initial experiments

 Suppressed disruption due to 

n = 1 applied error field

 Best feedback phase 

produced long pulse, bN = 6.4, 

bN/li = 13

- device R, L, mutual inductances

- instability B field / plasma response

- modeled sensor response
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Kinetic high beta RWM stability model tested
Resolved some RWM (Resistive Wall Mode) stability puzzles

• MISK code predicts stabilization of 

RWM from 

– precession drift resonance (D) at low

rotation

– bounce resonance (b) at high rotation 

• Plasma is marginally unstable at 

intermediate rotation

• Observed that RWM can be unstable 

despite significant plasma rotation 

contrary to fluid-based theory

• Obtained detailed measurements of RWM 

stability dependence on toroidal rotation 

to validate kinetic stability MISK models*

•Theory enhancements may lead to a unified 

model explaining NSTX / DIII-D observations 

having important implications for ITER: 

RWM can be unstable at expected rotation 

(advanced scenario 4) 
J. Berkery, PRL (2010)

16
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lq
mid found to vary strongly with Ip, independent of Bt and 

Ploss as part of FY 2010 Joint Research Target 

a depends on level of 
lithium conditioning, as 
does leading constant 
(Gray, IAEA 2010)

- Data includes slow IR + 
fast two-color IR cameras

• SOLT modeling 
reproduces Ploss trend, 
but not Ip dependence 
(Myra, PoP 2011)

• XGC-0 modeling 
reproduces ~ 1/Ip
dependence in tokamaks, 
from neoclassical physics 
(Pankin, IAEA 2010)

lq
mid ~ IP

-a

0 mg li: a=1.6

150 mg li: a=1.1

300 mg li: a=0.4
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“Snowflake” divertor configurations obtained in NSTX have 

significantly reduced peak heat flux

• High-d divertor configuration is 

transformed into “Snowflake” divertor.

• Significant reduction of peak heat flux 

observed in “snowflake” divertor.

- Potential divertor solution for NSTX-U.

18

Standard Divertor

Snowflake Divertor
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NSTX is a world leader in investigating pumping capability & 
plasma effects of Li - including Liquid Lithium Divertor (LLD)

• 4 LLD plates formed ~20cm wide 

annulus in lower outboard 

divertor

– Heatable surface of porous 
molybdenum (Mo)

– Loaded with Li by LiTER 
evaporation from above

• No evidence of Mo in plasma except from large ELMs, disruptions

• Chemistry of Li on C and LLD critical, complex

• LLD did not increase D pumping  

beyond that achieved with LiTER

– Assessing if LLD provides more 

sustained pumping than LiTER

– Data indicates C present on 

LLD, which may have impacted 

pumping performance

• Operating w/ strike-point on LLD 

may decrease core C content

– Strongest effect observed when 

plasma heats LLD surface 

above Li melting temperature 

– Interpretation complicated by 

ELMs in lower-d shape

LLD Impact on Plasma Performance:
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Operation with outer strike-point on Mo LLD (coated with Li) 

compatible with achievement of high-performance plasmas

◄ Strike-point (SP) on inner divertor
• Carbon Zeff = 3-4 typical of LiTER ELM-free H-mode

◄ SP on LLD – TLLD < TLi-melt
◄ SP on LLD – TLLD > TLi-melt (+ other differences)

20

• Shots have different fueling, LiTER

conditions, ELM characteristics:
• No ELMs, no  small, small  larger

• LSN with SP on LLD reduces d, k, q
• Reduces ELM and global stability

• Yet, can achieve high bN, low Zeff, Prad
• Would like to revisit operation on LLD in FY11

• Supports consideration of inboard Mo tiles

bN > 4 sustained
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Discharges With NSTX-Upgrade Aspect Ratio and 

Elongation Produced for Long Pulse at High-b

Plans in 2011 & 12

• n=0 control at high-A (boundary and VDE)

• Integrated performance, including transport and divertors 

Performance Characteristics vs. Aspect Ratio

A

k

bN

tE,th

Pinj

NSTX-Upgrade

PFC Boundary

21
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High Confinement H-Mode Regime Obtained with Lithium
~ High Performance ST Pilot Plant level Confinement of H98y2 < 1.7 

EPH

PNBI/10 [MW]

• Specially high H98y2 < 1.7 is a combination 

of lithium confinement improvement and 

higher pedestal temperatures / pressure

• ITER performance is highly pedestal 

pressure dependent, Q ~ P2

Separatrix

t1            t2 IAEA: R. Maingi, PRL 2010

~ 3 tE

22
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Coaxial Helicity Injection (CHI) has produced substantial 

current, and demonstrated significant ohmic flux savings

• Impurity Control Success

– Elimination of arcs in absorber 

region at top of vacuum vessel

– Conditioning of lower divertor

• Inboard Mo tiles could aid CHI

• CHI synergy with OH 

extended in 2010 run:
– Generated 1MA using 40% less 

flux than induction-only case

– Low internal inductance (li ≈ 

0.35), and high elongation

– Suitable for advanced scenarios

Time after CHI starts

IAEA: R. Raman, B.A. Nelson U Washington

Time (sec)

CHI + OH OH only

Difference

23

• Also obtained new record 370 kA peak current by CHI alone
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Progress made in sustaining HHFW heating during Ip=300 

kA RF-only H-mode plasma; Te(0) = 3keV with only 1.4 MW

• Low Ip HHFW experiments in 2005 could not maintain PRF during H-mode

• Produced sustained RF-only H-mode in 2010:

 Better plasma-antenna gap control than in 2005, due to reduced PCS latency

 Modeling predicts IRFCD ~ 85 kA, IBootstrap~ 100 kA  fNI ~ 60%

 High fNI enabled by positive feedback between ITB, high Te(0) and RF CD

 fNI ~ 100% requires PRF ~ 3 MW, well below arc-free PRF available in 2009

 No q-profiles for these RF-only plasmas – MSE-LIF will enable this in FY11-12 

24
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3-D AORSA full-wave model with 2-D wall boundary predicts 

large ERF following magnetic field near top & bottom of NSTX

• In addition to RF power coupling to core, AORSA predicts some RF power 

propagates just inside LCFS as an edge localized RF eigenmode

• Beginning to make divertor tile current measurements to compare to theory

H-mode

kf = -8 m-1

Antenna

D. L. Green, ORNL

H-mode

kf = -8 m-1

Edge RF eigenmode looks similar to 

striated structures imaged by visible plasma 

TV

25
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TAE-Avalanche induced neutron rate drop modeled 

successfully using NOVA and ORBIT codes 

IAEA: E. Fredrickson IAEA: M. Podestà  UCI

• Toroidal Alfvén Eigenmode (TAE) avalanches in NBI-heated plasmas 
associated with transient reductions in DD neutron rate - “sea” of TAEs 
expected in ITER and future STs

• Change in beam-ion profile measured with Fast-ion D-alpha (FIDA)

• Modeled using NOVA and ORBIT codes

– Mode structure obtained by comparing NOVA calculations with reflectometer data

– Fast ion dynamics in the presence of TAEs calculated by guiding-center code ORBIT

Fast Ion Profile 
(El = 30-60keV)

IAEA:G-Y. Fu

26


