

Supported by

NSTX Upgrade Plans and Collaboration Discussion

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U ORNL** PPPL PSI **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Jon Menard / Masa Ono

for the NSTX Research Team

March 9, 2011 PPPL

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBS** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

NSTX Upgrade will contribute strongly to toroidal plasma science and preparation for a fusion nuclear science (FNS) program

•NSTX:

- Provide foundation for ST physics and performance and support ITER

•NSTX Upgrade:

- Study high beta plasmas at reduced collisionality
 - Vital for understanding confinement, stability, start-up, sustainment
- -Assess full non-inductive current drive operation
 - Needed for steady-state operating scenarios in ITER and FNS facility
- Prototype solutions for mitigating high heat, particle exhaust
 - Can access world-leading combination of P/R and P/S
 - Needed for testing integration of high-performance fusion core and edge

•NSTX Upgrade contributes strongly to possible next-step STs:

- Plasma Material Interface Facility (PMIF)
 - Develop long-pulse PMI solutions for FNSF / Demo (low-A and high-A)
 - Further advance start-up, confinement, sustainment for ST
- Fusion Nuclear Science Facility/Component Test Facility (FNSF/CTF)
 - Develop fusion nuclear science, test nuclear components
- Pilot Plant usion Nuclear Science Facility
 - FSNF mission + power-plant relevant maintenance + $Q_{eng} \sim 1$

FNSF (ST-CTF) Pilot Plant

2

Access to reduced collisionality is needed to understand underlying causes of ST transport, scaling to next-steps

- Higher toroidal field & plasma current enable access to higher temperature
- Higher temperature reduces collisionality, but increases equilibration time
- Upgrade: Double field and current + 3-5x increase in pulse duration to substantially narrow capability gap → 3-6x decrease in collisionality

Increased auxiliary heating and current drive are needed to fully exploit increased field, current, and pulse duration

- Higher heating power to access high temperature and β at low collisionality Need additional 4-10MW, depending on confinement scaling
- Increased external current drive to access and study 100% non-inductive
 Need 0.25-0.5MA compatible with conditions of ramp-up and sustained plasmas
- Upgrade: double neutral beam power + more tangential injection
 - More tangential injection \rightarrow up to 2 times higher efficiency, current profile control - ITER-level high-heat-flux plasma boundary physics capabilities & challenges

NSTX Upgrade will bridge the device and performance gap toward next-step STs

NSTX Upgrade will extend normalized divertor and first-wall heat-loads much closer to FNS, pilot regimes

NSTX Upgrade Project Good Progress to Date

NSTX

☑ CD-0 Approved - *February 2009*

- Approval of mission need
- Begin Conceptual design
- ☑ Conceptual Design Review October 2009

✓ CD-1 Approved - April 2010

- Approval of Alternate selection and cost range
- Begin Preliminary Design
- Begin Capital costing
- ✓ Preliminary Design Review June 2010

✓ CD-2 Approved - December 2010

- Approval of performance baseline
- Technical, cost, schedule baseline frozen!
- □ Final Design Review June 2011
- □ Award critical and long lead procurements 2012
- □ Complete fabrication, assembly, test of TF/OH 2013
- □ Install NBI Vessel Cap, 2nd NBI, new centerstack 2014
- □ Integrated system test, complete project 2014

Near-term NSTX Programmatic Schedule

- Mar. 15-18, 2011 Annual research forum for FY11-12 run
 - You are invited to submit proposals!
 - Web URL will be: http://nstx-forum-2011.pppl.gov/
- Jun. Sep. 2011 Finish FY2011 run (10 more run weeks)
 - Research Priorities:
 - Improve understanding of pedestal structure joint with C-Mod, DIII-D, theory
 - Measure ion-scale (using new BES) + electron-scale turbulence
 - Optimize plasma stability and control at increased aspect ratio and elongation
 - Characterize performance of high flux expansion "snow-flake" divertor
 - Assess pedestal transport and stability response to 3D fields for ITER

• Oct. 2011 to end of Feb. 2012 - FY2012 run (10 run weeks)

- Research Priorities:
 - Assess core transport predictive capability joint research with C-Mod, DIII-D
 - Measure relationship between Li-conditioned surfaces and plasma behavior
 - Assess confinement, heating, and ramp-up of CHI start-up plasmas
 - Access stable high-performance scenarios with reduced density and collisionality
- April 2012 Begin NSTX Upgrade outage

- NSTX researchers will become more available for collaboration during Upgrade outage (2012-14)
- We are working now to identify collaboration opportunities on a range of facilities:

– DIII-D, C-Mod, KSTAR, EAST, ...

• KSTAR collaboration opportunities available at:

http://nstx.pppl.gov/DragNDrop/Program_PAC/Other_facility_plans/KSTAR_Research_Topics_2011-0302_YKOH_v2.pdf

NSTX Mission Elements

Understand/exploit unique ST parameters

- High heat flux for novel divertor and PMI studies
- Low A, I_i and high β , κ , v_{fast}/v_A for stability, transport
- Role of NSTX Upgrade:
 - Prototype methods to mitigate very high heat/particle flux
 - Study high beta plasmas at reduced collisionality
 - Access full non-inductive operation for FNSF applications

Extend understanding of tokamak / ITER

Develop predictive capability for ITER/FNSF/Demo

Establish attractive ST operation

- Utilize ST to close key gaps to Demo
- Advance ST as fusion power source

Interface

Facility (PMIF)

Science Facility

(FNSF)

Pilot Plant

11

NSTX is addressing multi-scale transport issues critical to future devices – ITER and next step STs

• BES also contributing to energetic particle research

•D. Smith, U. Wisconsin

NSTX is beginning to unravel the mystery of the collisionality dependence of ST energy confinement

New high-k scattering measurements show Previous NSTX (and MAST) fluctuation levels apparently <u>increase</u> at lower v^* experiments exhibit nearly 10^{-'} inverse dependence of $B\tau_{F}$ on Lower r/a ~ 0.6 collisionality 10⁻⁸ S/n² (au) ST-CTF 1.0 constant **q**, β, ρ***** highe 10^{-9} NSTX Upgrade $B_T \tau_E (T-s)$ The drop in the spectral power may be due to the higher ExB shearing rate. **NSTX** 10^{-10} **ITER-like** 10⁰ *-0.97 10 scaling $k_{\perp} \rho_s$ 10 NSTX120968A02 t=0.560 s ~ ve^{*-0.95} r/a=0.6 γ_⊏=0 🔶 Total П Thermal 0.01 0.001 10^{0} $\chi_{e}~(\rho_{s}^{2}c_{s}/a)$ exp 0.10 0.01 $v_e^* \propto n_e / T_e^2$ 10 sim_,1.1 П Non-linear GYRO simulations of lower-k μ -tearing predict χ_e proportional to v^* 10⁻² 10⁻² 10⁻¹ 10⁰ Is μ -tearing playing major role in ST e-transport? v_{ei} (c_s/a)

 10^{1}

Improvements in stability control techniques have significantly reduced RWM instability at high β_N and low I_i

- High normalized beta β_{N} = 6–7 and high β_{N} / I_i = 10-14 routinely accessed
- Improvements: sensor AC compensation + combined B_P+B_R + state-space controller
- Disruption probability for $\beta_N / I_i > 11$ plasmas reduced from ~50% to ~14%

New RWM state space controller sustains high β_N

- device R, L, mutual inductances
- instability B field / plasma response
- modeled sensor response
- Controller can compensate for wall currents
 - Including mode-induced current
 - Examined for ITER
- Successful initial experiments
 - Suppressed disruption due to n = 1 applied error field
 - Best feedback phase produced long pulse, $\beta_N = 6.4$, $\beta_N/l_i = 13$

Kinetic high beta RWM stability model tested Resolved some RWM (Resistive Wall Mode) stability puzzles

- Observed that RWM can be unstable despite significant plasma rotation contrary to fluid-based theory
- Obtained detailed measurements of RWM stability dependence on toroidal rotation to validate kinetic stability MISK models*
- MISK code predicts stabilization of RWM from
- precession drift resonance (ω_D) at low rotation
- bounce resonance (ω_{b}) at high rotation
- Plasma is marginally unstable at intermediate rotation

•Theory enhancements may lead to a unified model explaining NSTX / DIII-D observations having important implications for ITER: RWM can be unstable at expected rotation (advanced scenario 4)

λ_q^{mid} found to vary strongly with I_p, independent of B_t and P_{loss} as part of FY 2010 Joint Research Target

- α depends on level of lithium conditioning, as does leading constant (Gray, IAEA 2010)
 - Data includes slow IR + fast two-color IR cameras
- SOLT modeling reproduces P_{loss} trend, but not I_p dependence (Myra, PoP 2011)
- XGC-0 modeling reproduces ~ 1/l_p dependence in tokamaks, from neoclassical physics (Pankin, IAEA 2010)

"Snowflake" divertor configurations obtained in NSTX have significantly reduced peak heat flux

- High- δ divertor configuration is transformed into "Snowflake" divertor.
- Significant reduction of peak heat flux observed in "snowflake" divertor.
 - Potential divertor solution for NSTX-U.

NSTX is a world leader in investigating pumping capability & plasma effects of Li - including Liquid Lithium Divertor (LLD)

- 4 LLD plates formed ~20cm wide annulus in lower outboard divertor
 - Heatable surface of porous molybdenum (Mo)
 - Loaded with Li by LiTER evaporation from above

LLD Impact on Plasma Performance:

- LLD did not increase D pumping beyond that achieved with LiTER
 - Assessing if LLD provides more sustained pumping than LiTER
 - Data indicates C present on LLD, which may have impacted pumping performance
- Operating w/ strike-point on LLD may decrease core C content
 - Strongest effect observed when plasma heats LLD surface above Li melting temperature
 - Interpretation complicated by ELMs in lower-δ shape
- No evidence of Mo in plasma except from large ELMs, disruptions
- Chemistry of Li on C and LLD critical, complex

Operation with outer strike-point on Mo LLD (coated with Li) compatible with achievement of high-performance plasmas

Strike-point (SP) on inner divertor
 Carbon Z_{eff} = 3-4 typical of LiTER ELM-free H-mode

SP on LLD - T_{LLD} < T_{Li-melt}
 SP on LLD - T_{LLD} > T_{Li-melt} (+ other differences)

• Shots have different fueling, LiTER conditions, ELM characteristics:

• No ELMs, no \rightarrow small, small \rightarrow larger

- LSN with SP on LLD reduces δ, κ, *q* • Reduces ELM and global stability
- Yet, can achieve high β_N , low Z_{eff} , P_{rad} • Would like to revisit operation on LLD in FY11
 - Supports consideration of inboard Mo tiles

Discharges With NSTX-Upgrade Aspect Ratio and Elongation Produced for Long Pulse at High-β

Performance Characteristics vs. Aspect Ratio

n=0 control at high-A (boundary and VDE)

Integrated performance, including transport and divertors

High Confinement H-Mode Regime Obtained with Lithium ~ High Performance ST Pilot Plant level Confinement of H98y2 < 1.7

WNSTX

NSTX Upgrade and Collaboration - J. Menard

Coaxial Helicity Injection (CHI) has produced substantial current, and demonstrated significant ohmic flux savings

Time after CHI starts

Impurity Control Success

- Elimination of arcs in absorber region at top of vacuum vessel
- Conditioning of lower divertor
 - Inboard Mo tiles could aid CHI

- CHI synergy with OH extended in 2010 run:
 - Generated 1MA using 40% less flux than induction-only case
 - Low internal inductance (l_i ≈ 0.35), and high elongation
 - Suitable for advanced scenarios
- Also obtained new record 370 kA peak current by CHI alone

IAEA: R. Raman, B.A. Nelson U Washington

Progress made in sustaining HHFW heating during $I_p=300$ kA RF-only H-mode plasma; $T_e(0) = 3 \text{keV}$ with only 1.4 MW

- Low I_p HHFW experiments in 2005 could not maintain P_{RF} during H-mode
- Produced sustained RF-only H-mode in 2010:
 - Better plasma-antenna gap control than in 2005, due to reduced PCS latency
 - ➢ Modeling predicts I_{RFCD} ~ 85 kA, I_{Bootstrap}~ 100 kA → f_{NI} ~ 60%
 - > High f_{NI} enabled by positive feedback between ITB, high $T_e(0)$ and RF CD
 - > $f_{NI} \sim 100\%$ requires $P_{RF} \sim 3$ MW, well below arc-free P_{RF} available in 2009
 - ➢ No q-profiles for these RF-only plasmas MSE-LIF will enable this in FY11-12

3-D AORSA full-wave model with 2-D wall boundary predicts large E_{RF} following magnetic field near top & bottom of NSTX

- In addition to RF power coupling to core, AORSA predicts some RF power propagates just inside LCFS as an edge localized RF eigenmode
- Beginning to make divertor tile current measurements to compare to theory

TAE-Avalanche induced neutron rate drop modeled successfully using NOVA and ORBIT codes

- Toroidal Alfvén Eigenmode (TAE) avalanches in NBI-heated plasmas associated with transient reductions in DD neutron rate - "sea" of TAEs expected in ITER and future STs
- Change in beam-ion profile measured with Fast-ion D-alpha (FIDA)
- Modeled using NOVA and ORBIT codes
 - Mode structure obtained by comparing NOVA calculations with reflectometer data
 - Fast ion dynamics in the presence of TAEs calculated by guiding-center code ORBIT

IAEA: E. Fredrickson

IAEA: M. Podestà UCI

IAEA:G-Y. Fu