

Supported by

NSTX-U Initial Operations Plan 5 Year Plan for Scenarios and Control

S.P. Gerhardt

Advanced Scenarios and Control TSG

NSTX-U PAC 33 Feb. 19-21, 2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep

Office of

Science

- Plans for Entering the First NSTX-U Operations Period
- ASC Research Plans for 5-year Period

Operations Activities Designed to Fit in the Existing NSTX-U Project Schedule

• NSTX research operations activities conducted in coordination with Upgrade project.

Time	Activity
May-Nov., 2013	Diagnostic Reinstallations/Calibrations In Parallel with Construction Activities
Dec. 2013 – March, 2014	Close Machine (w/o CS), Leak Checking, Prep. for CS installation.
April-May, 2014	CS Installation
June, 2014	Final Calibrations, Particularly Those Diagnostics Requiring CS for Calibration
July-Sept., 2014	Run Prep, Internal and DOE Readiness Reviews, Integrated Systems Testing, First plasma

 Schedule for diagnostic installations and calibration has been developed in 2-week increments.

Initial Operations Plans Designed to Rapidly Recover Physics Operations Capabilities

() NSTX-U

NSTX-U Field and Current Capabilities Will Be Increased Gradually Over a ~3 Year Period

	NSTX	Year 1 NSTX-U Operations	Year 2 NSTX-U Operations	Year 3 NSTX-U Operations	Ultimate Goal
I _P [MA]	1.4	~1.6	2.0	2.0	2.0
Β _τ [T]	0.55	~0.8	1.0	1.0	1.0
Allowed TF I ² t [MA ² s]	7.3	80	120	160	160
I _P Flat-Top at max. allowed I ² t, I _P , and B _T [s]	~0.7	~3.5	~3	5	5

- 1st year goal: operating points with forces up to ½ the way between NSTX and NSTX-U, ½ the design-point heating of any coil
 - Will permit up to ~5 second operation at B_T ~0.65
- 2nd year goal: Full field and current, but still limiting the coil heating
 - Will revisit year 2 parameters once year 1 data has been accumulated
- 3rd year goal: Full capability

NSTX-Upgrade Engineers Developing a Plan For Mechanical Diagnostics to Assess the Accuracy of the Mechanical Models Underlying Protection Levels

- Plans for Entering the First NSTX-U Operations Period
- ASC Research Plans for 5-year Period

ASC Research Targets Integrated, Steady-State Scenario Needs for FNSF/CTF and ITER

Steady-state scenarios for ITER or a CTF/FNST must:

- Have full current drive with acceptable recirculating power.
 - NSTX-U ASC: Explore a range of β_{N} with 100% non-inductive CD.
- Control the divertor heat flux to be within acceptable material limits.
 - NSTX-U ASC: divertor geometry and radiation control.
- Simultaneously optimize confinement and passive disruption avoidance.
 - NSTX-U ASC: optimization and control of the boundary, rotation and current profiles.
- Detect and respond to disruptions and off-normal events.
 - NSTX-U ASC: disruption detection and softshutdowns.

NSTX Operational Space: β_N vs A >1 τ_F average for each point

Conventional NSTX Operating Space High-A Experiment During FY-11 Run

ASC Research Targets Integrated, Steady-State Scenario Needs for FNSF/CTF and ITER

- Have full current drive with acceptable recirculating power.
 - NSTX-U ASC: Explore a range of β_{N} with 100% non-inductive CD.
- Control the divertor heat flux to be within acceptable material limits.
 - NSTX-U ASC: divertor geometry and radiation control.
- Simultaneously optimize confinement and passive disruption avoidance.
 - NSTX-U ASC: optimization and control of the boundary, rotation and current profiles.
- Detect and respond to disruptions and off-normal events.
 - NSTX-U ASC: disruption detection and softshutdowns.

- Plans for Entering the First NSTX-U Operations Period
- ASC Research Plans for 5-year Period

ASC Programmatic Goal For 5 Year Plan:

Develop the basis for integrated, steady-state operation and axisymmetric control for next-step STs, while helping resolve key scenario and control issues for ITER.

ASC Operational Goal For 5 Year Plan:

Establish stationary, 100% non-inductive operation, and partial inductive operation up to $I_P=2$ MA, for 5 seconds over a wide range of Greenwald fractions.

Research required to meet these goals divided into four thrusts.

- Plans for Entering the First NSTX-U Operations Period
- ASC Research Plans for 5-year Period
 - Thrust 1: Scenario Physics
 - Thrust 2: Axisymmetric Control Development
 - Thrust 3: Disruption Avoidance By Controlled Discharge Shutdown
 - Thrust 4: Scenario Physics for Next Step Devices

- Plans for Entering the First NSTX-U Operations Period
- ASC Research Plans for 5-year Period
 - Thrust 1: Scenario Physics
 - Thrust 2: Axisymmetric Control Development
 - Thrust 3: Disruption Avoidance Bv Controlled Discharge Shutdown
 - Thrust 4: Scenario Physics for Next Step Devices

Highly collaborative research, planned with the expectation of team-wide contributions

WNSTX-U

- Plans for Entering the First NSTX-U Operations Period
- ASC Research Plans for 5-year Period
 - Thrust 1: Scenario Physics
 - Development of 100% non-inductive operation.
 - Extend the high-current, partial-inductive scenarios to long-pulse.
 - Thrust 2: Axisymmetric Control Development
 - Develop methods to control the heat flux for high-power scenarios.
 - Develop rotation and current profile control.
 - Thrust 3: Disruption Avoidance By Controlled Discharge Shutdown
 - Develop detection of impending disruptions.
 - Develop techniques for the automated termination of discharges.
 - Thrust 4: Scenario Physics for Next Step Devices
 - Determine the optimal, simultaneous q- and rotation profiles.
 - Study the conditions for classical beam current drive.
 - Explore & validate integrated models for projections to FNSF.

Highly collaborative research, planned with the expectation of team-wide contributions

We Anticipate The Non-Inductive Current Level at B_T=1.0 T Thrust #1 and P_{ini}=12.6 MW To Be Between ~900 & ~1300 kA

WNSTX-U

NSTX-U PAC 33– Initial Operations and ASC, Gerhardt (02/19/2012)

Non-Inductive Operating Points Projected Over a Range of Thrust #1 Toroidal Fields, Densities, and Confinement Levels

- Free-Boundary TRANSP calculations of NSTX-U operations points.
 - See: S.P. Gerhardt, et al, Nuclear Fusion
 52 083020 (2012)

Research Timeline for 100% Non-Inductive Scenarios

Operation Year	Β _τ [T]	Current Goal [kA]	Duration Goal
1	0.75	~600-800	A few τ_{E}
2	0.75-1.0	~600-1000	1-2 τ _R
3-4	1	800-1300	Up to 4.5 s at lower I _P

Particle & heat flux control, NBCD tools required to realize these scenarios discussed in upcoming slides.

B_T =1.0 T, I_P =1 MA, P_{ini} =12.6 MW

- Plans for Entering the First NSTX-U Operations Period
- ASC Research Plans for 5-year Period
 - Thrust 1: Scenario Physics
 - Development of 100% non-inductive operation.
 - Extend the high-current, partial-inductive scenarios to long-pulse.
 - Thrust 2: Axisymmetric Control Development
 - Develop methods to control the heat flux for high-power scenarios.
 - Develop rotation and current profile control.
 - Thrust 3: Disruption Avoidance By Controlled Discharge Shutdown
 - Develop detection of impending disruptions.
 - Develop techniques for the automated termination of discharges.
 - Thrust 4: Scenario Physics for Next Step Devices
 - Determine the optimal, simultaneous q- and rotation profiles.
 - Study the conditions for classical beam current drive.
 - Explore & validate integrated models for projections to FNSF.

Optimizing the Early Discharge Evolution Will Play an Important Role in Achieving Low Collisionality at High-Current

Optimizing the Early Discharge Evolution Will Play an Important Role in Achieving Low Collisionality at High-Current

- Timing and magnitude of fueling has profound impact on discharge evolution, will be optimized in NSTX-U.
- Will slower I_P ramps w/ larger solenoid facilitate reduced fueling?
- Will improved solenoid design and reduced error fields improve lower-density startup.
- Will the extra torque from the new beams reduce prevalence of locking?

Milestone R14-1

Will Develop Long-Pulse Partial Inductive Operation Up to 2MA with High Power

- Two types of partial inductive operation:
 - High-I_P operation supports collisionality scaling and divertor heat flux studies
 - Long pulse operation for particle retention and disruptivity reduction studies
- Years 1 & 2 of ops.: Re-optimize startup for reduced fueling and low collisionality.
 - Optimize fueling, ramp-rate, error field correction, torque input to facilitate reduced density
- Years 3 & 4 of ops: Performance Extension
 - Discharges up to 2 MA for 5 seconds.
 - Long pulse at ~1 MA for up to 10 seconds
- High-I_P & long pulse development will be connected to progress in:
 - Particle Control
 - Heat flux mitigation

 B_T =0.75 T, **8-10 Second Discharge** Scenarios Limited by q_{min} >1.1 or OH Coil I²t 2 Confinement and 2 Profile Assumptions

NSTX-U

NSTX-U PAC 33– Initial Operations and ASC, Gerhardt (02/19/2012) BP, MS TSGs

19

Operation Tools for Density & Impurity Control

Thrust #1

Years 1 & 2 of ops.: Examine Wall Conditioning, Fueling, and ELM Pacing

Boronized PFC Studies

- Utilize regimes with natural ELMs to control impurity accumulation.
- Between-shot He glow for wall conditioning.
- Deuterium inventory likely to rise throughout the discharge.

Lithiated PFC Studies

- High- τ_E , ELM-free regimes w/ Li conditioning
- Pulsed 3D fields or lithium granules for ELM pacing to provide impurity control.
- Deuterium inventory likely well controlled, but unclear if target Z_{eff}~2 can be achieved.

Techniques to Be Covered in Greater Detail in Talks By Maingi, Canik, Soukhanovskii, Jaworski

Operation Tools for Density & Impurity Control

Thrust #1

Years 1 & 2 of ops.: Examine Wall Conditioning, Fueling, and ELM Pacing

Boronized PFC Studies

- Utilize regimes with natural ELMs to control impurity accumulation.
- Between-shot He glow for wall conditioning.
- Deuterium inventory likely to rise throughout the discharge.

Lithiated PFC Studies

- High- τ_E , ELM-free regimes w/ Li conditioning
- Pulsed 3D fields or lithium granules for ELM pacing to provide impurity control.
- Deuterium inventory likely well controlled, but unclear if target Z_{eff} ~2 can be achieved.

Both Scenarios: Realtime Density Measurements via FIReTIP PCS control of Supersonic Gas Inj. for Density Control

Techniques to Be Covered in Greater Detail in Talks By Maingi, Canik, Soukhanovskii, Jaworski

Operation Tools for Density & Impurity Control

Thrust #1

Years 1 & 2 of ops.: Examine Wall Conditioning, Fueling, and ELM Pacing

Boronized PFC Studies

- Utilize regimes with natural ELMs to control impurity accumulation
- Between-shot He glow for wall conditioning
- Deuterium inventory likely to rise throughout the discharge

Lithiated PFC Studies

- High- τ_E , ELM-free regimes w/ Li conditioning
- Pulsed 3D fields or lithium granules for ELM pacing to provide impurity control
- Deuterium inventory likely well controlled, but unclear if target Z_{eff} ~2 can be achieved

Both Scenarios: Realtime Density Measurements via FIReTIP PCS control of Supersonic Gas Inj. for Density Control

Years 3 & 4 of ops.: Utilize Cryo-pumping and Partial NCC

Cryo-pump in lower-divertor to provide deuterium inventory control

- Natural or paced ELMs to control core impurity accumulation
- Make comparisons to regimes with paced ELMs and lithium pumping

Partial NCC to aid in ELM pacing and RMP studies

- Attempt direct modification of pedestal particle transport via RMP
- Determine optimal spectrum for magnetic ELM pacing, with minimal core degradation

Techniques to Be Covered in Greater Detail in Talks By Maingi, Canik, Soukhanovskii, Jaworski

Full Utilization of the NSTX-U Will Require Heat Flux Mitigation Solutions

- Thermal stresses in target tiles can exceed ATJ graphite limits.
 - Inner horizontal target tiles qualified for 5 sec operation at Q_{ave}=5 MW/m²
- Desire to avoid tile surface temperatures exceeding T_{max}~1200 C.

• Conservative assumption:

$$\lambda_q = 0.92I_P^{-1.6} \quad Q_{Pk} = \frac{P_{heat}f_{div}}{2\pi R\lambda_q f_{exp}\sin(\theta)} \quad Q_{ave} = 0.63Q_{Pk}$$

Discharge Parameters		Worst-Case DN Div f _{exp} =15 &	e Standard vertor a f _{div} =0.4			
I _P [MA]	P _{inj} [MW]	Heating Duration [s]	Q _{Pk} [MW/m²]	Time to T _{max} [s]	Q _{Pk} [MW/m²]	Time to T _{max} [s]
0.75	10.2	5.0	6	12.6		
1.5	10.2	5.0	18	1.4		
2.0	10.2	5.0	28	0.5		
1.5	15.6	1.5	27	0.6		
2.0	15.6	1.5	43	0.25		

NSTX-U PAC 33– Initial Operations and ASC, Gerhardt (02/19/2012) BP TSG

Full Utilization of the NSTX-U Will Require Heat Flux **Mitigation Solutions**

- Thermal stresses in target tiles can exceed ATJ graphite limits.
 - Inner horizontal target tiles qualified for 5 sec operation at Qave=5 MW/m² —
- Desire to avoid tile surface temperatures exceeding T_{max} ~1200 C.
- Conservative assumption: $\lambda_q = 0.92 I_P^{-1.6} \quad Q_{Pk} = \frac{P_{heat} f_{div}}{2\pi R \lambda_a f_{exp} \sin(\theta)} \quad Q_{ave} = 0.63 Q_{Pk}$ •

Broadening the heat channel (f_{exp}) via the snowflake divertor Increasing the fraction of radiated power (decreasing f_{div})

Primary solutions:

Discharge Parameters		Worst-Case DN Div f _{exp} =15 &	e Standard vertor a f _{div} =0.4	f _{exp} =60 & f _{div} =0.4 or f _{exp} =15 & f _{div} =0.1		
I _P [MA]	P _{inj} [MW]	Heating Duration [s]	Q _{Pk} [MW/m²]	Time to T _{max} [s]	Q _{Pk} [MW/m²]	Time to T _{max} [s]
0.75	10.2	5.0	6	12.6	1.5	200
1.5	10.2	5.0	18	1.4	4.5	22
2.0	10.2	5.0	28	0.5	7	8.7
1.5	15.6	1.5	27	0.6	7	9.3
2.0	15.6	1.5	43	0.25	11	4.0

NSTX-U PAC 33- Initial Operations and ASC, Gerhardt (02/19/2012) **BP TSG**

- Plans for Entering the First NSTX-U Operations Period
- ASC Research Plans for 5-year Period
 - Thrust 1: Scenario Physics
 - Development of 100% non-inductive operation.
 - Extend the high-current, partial-inductive scenarios to long-pulse.
 - Thrust 2: Axisymmetric Control Development
 - Develop methods to control the heat flux for high-power scenarios.
 - Develop rotation and current profile control.
 - Thrust 3: Disruption Avoidance By Controlled Discharge Shutdown
 - Develop detection of impending disruptions.
 - Develop techniques for the automated termination of discharges.
 - Thrust 4: Scenario Physics for Next Step Devices
 - Determine the optimal, simultaneous q- and rotation profiles.

Snowflake Geometry and/or Divertor Radiation ControlThrust #2Required for High-Current Operation

- Physics of these techniques to be covered in Boundary Physics talk
- Control development plans
 - Pre-ops year:
 - Collaborate on snowflake divertor physics and control experiments at DIII-D
 - Years 1 & 2 of ops.:
 - Develop schemes for dual X-point control using new divertor coils
 - Assess magnetic balance control in the presence of 4 X-points
 - Develop the realtime measurements for divertor radiation control
 - Between years 2 & 3 of ops: Install cryo-pump
 - Years 3 & 4 of ops:
 - Utilize cryo-pump + snowflake divertor for increasing the pulse length at higher current
 - Begin implementation of closed loop radiative divertor control

NSTX-U Will Have Significant Actuators For Profile Control Studies

Rotation Profile Actuators

Torque Profiles From 6 Different NB Sources

Thrust #2

NSTX-U Will Have Significant Actuators For Profile Control Studies

Rotation Profile Actuators

q-Profile Actuators

Thrust #2

NSTX-U PAC 33– Initial Operations and ASC, Gerhardt (02/19/2012) **MS, EP TSGs**

Profile Control Techniques Will be Developed To Support Thrust #2 NSTX-U Physics Studies and Next-Step ST Designs

- Pre-ops. Year: Continue developing control schemes for NSTX-U actuators.
 - Lehigh: Collaboration on q-profile control algorithms, building on their experience at DIII-D.
 - Princeton University: Collaboration on rotation profile control algorithms.
 - Continue operations collaborations on KSTAR and EAST.
- Years 1 & 2 of ops.:
 - Test ability of different NB source selection to change the q-profile.
 - Study as a function of density, fast-ion β , source voltage.
 - Assess the NBCD calculations underpinning NSTX-U and most next-step ST studies.
 - Commission rtMSE (Nova Photonics) and rtV $_{\phi}$ (PPPL) diagnostics.
 - Make first tests of β_N + central rotation (F_{T,0}) and, if feasible, β_N +q_{min} control.
- Years 3 & 4 of ops.:
 - Expand rotation control to the full profile.
 - Complete $\beta_N + q_{min}$ control and assess combined control, e.g., $\beta_N + F_{T,0} + q_{min}$.
 - Assess NTV capabilities from NCC for enhanced rotation profile control.
 - Work with MS group to develop physics-based requests for disruption avoidance goals.
 Milestone R14-3

- Plans for Entering the First NSTX-U Operations Period
- ASC Research Plans for 5-year Period
 - Thrust 1: Scenario Physics
 - Development of 100% non-inductive operation.
 - Extend the high-current, partial-inductive scenarios to long-pulse.
 - Thrust 2: Axisymmetric Control Development
 - Develop methods to control the heat flux for high-power scenarios.
 - Develop rotation and current profile control.
 - Thrust 3: Disruption Avoidance By Controlled Discharge Shutdown
 - Develop detection of impending disruptions.
 - Develop techniques for the automated termination of discharges.
 - Thrust 4: Scenario Physics for Next Step Devices
 - Determine the optimal, simultaneous q- and rotation profiles.

Disruption Avoidance Via Discharge Shut-Down Will be Developed

Thrust #3

- Disruption detection algorithms have been developed using NSTX data
- Compare diagnostic data to thresholds & assign "penalty points" when thresholds are exceeded.
- Sum the "penalty point", and declare a warning when the point total exceeds a given threshold.
- Provides the foundation of disruption detection in NSTX-U.
- Years 1 & 2 of ops.:
 - Implement basic detector in PCS, and design architecture of control response.
 - Assess accuracy of predictor for NSTX-U disruptions, and refine as necessary.
 - Do initial tests of automated rampdowns.
- Years 3 & 4 of ops.:
 - Add additional realtime diagnostics for improved detection fidelity.
 - Optimize rampdowns for different types of alarms.
 - Incorporate closed loop MGI if it appears promising.

S.P. Gerhardt, et al., submitted to Nuclear Fusion

Connections of MS TSG:

- n>=1 control, including disruption avoidance scenarios, covered by MS TSG.
- MGI physics covered by MS TSG

Milestone R13-4

- Plans for Entering the First NSTX-U Operations Period
- ASC Research Plans for 5-year Period
 - Thrust 1: Scenario Physics
 - Development of 100% non-inductive operation.
 - Extend the high-current, partial-inductive scenarios to long-pulse.
 - Thrust 2: Axisymmetric Control Development
 - Develop methods to control the heat flux for high-power scenarios.
 - Develop rotation and current profile control.
 - Thrust 3: Disruption Avoidance By Controlled Discharge Shutdown
 - Develop detection of impending disruptions.
 - Develop techniques for the automated termination of discharges.
 - Thrust 4: Scenario Physics for Next Step Devices
 - Determine the optimal, simultaneous q- and rotation profiles.
 - Study the conditions for classical beam current drive.
 - Explore & validate integrated models for projections to FNSF.

Explore Optimal Scenarios for Next Step STs All Topics in Collaboration with Other TSGs

Study optimal profiles for confinement and stability.

Thrust #4

- Optimization of the current profile for best confinement and core stability.
- Explore alternative optimal scenarios, such as EPH or w/ ITBs.
- Study the conditions for classical beam current drive
 - Study what parameters determine when *AE modes lead to anomalies in the fast ion diffusion and NBCD.
 - Can anomalous diffusion be used for scenario optimization?
- Assess integrated models for projections to FNSF.
 - Compare NBCD & q-profile predictions from integrated codes to NSTX-U.
 - Project scenarios to ST FNSF devices.

Milestone R15-2

ASC Research Supports Development of High-Performance Integrated Scenarios for NSTX-U, FNSF & ITER

- Plans for initial NSTX-U operations have been formed, in support of physics program objectives
- ASC 5-year plan designed to provide solutions for
 - the operations needs for the NSTX-U research program
 - physics needs for ITER and next-step ST scenarios
- Research will address outstanding needs by
 - developing stationary scenarios over a range of non-inductive fractions, plasma currents, and collisionalities
 - developing measurements, algorithms, and actuators for control of
 - the current & rotation profiles,
 - the core density,
 - the divertor geometry and radiation,
 - validating models for NBCD & thermal transport to enable projections for next-step STs

Backup!!!!!

Criterion For Heat Flux Limits

- Calibrate expression for tile surface temperature against engineering models:
 - $T_{surf} = CQ_{ave} t1^{/2}$
 - Use T_{surf} =1000 C, t=5 s, Q_{avg} =5 MW/m².
 - Derive C~90 Cm²/MWs^{1/2}
- Derive heat flux Q from simple scalings:

Summary of Tile Thermal Structural Response					
	Heat Flux for 5s	Ratcheted Temperatur e	Peak Tensile Principal Stress, S1	Peak Compress Principal Stress, S3	Max Deflection
	mw/m2	С	MPa		mm
IBDhs, surface	5.0	1062	15.6	-58.0	0.6
Hot Spot at Corne	Hot Spot at Corner				
IBDvs, surface	1.6	425	7.0	-16.3	0.1
Hot Spot at Hole		560			
CSAS, surface	1.6	327	8.2	-10.7	0.2
Hot Spot at Hole		417			
CSFW	0.2	260	1.6	-6.5	0.01

1st Pulse Heat Flux/Pulse Length Capability

🔘 NSTX-U

Physics and Engineering Operations Activities Over the Next ~Year Will Provide the Baseline For NSTX-U Operations

- Upgrading the Plasma Control System (PCS) for NSTX-U.
 - Upgrading to new 32-core computer.
 - Switching to 64 bit real-time Linux with advanced debugging tools.
 - Upgrading shape-control codes for new divertor coils, gas injector controls for new/additional injectors, additional physics algorithms
 - Improving the real-time data-stream.
 - Assisting with development of a new Digital Coil Protection System (DCPS).
- Upgrading HHFW antenna feedthroughs for higher disruption forces.
- Boundary Physics Operations
 - Improving the PFC geometry in the vicinity of the CHI gap to protect the vessel and coils.
 - Developing an upgraded Boronization system.
 - Developing lithium technologies (granule injector, upward LITER).
- Diagnostic Upgrades
 - Fabricating new port covers to support high-priority diagnostics.
 - Installing additional, redundant magnetic sensors.
 - Upgrading diagnostics: Bolometry (PPPL), ssNPAs, spectroscopy (collaborators)
- Physics & Engineering Operations
 - Replacing electronics that control & protect rectifiers.
 - Upgrading the poloidal field coil supplies to support up-down symmetric snowflake divertors.
 - Developing PF null/breakdown scenario w/ new CS.

Pursue 100% Non-Inductive Current at Progressively Higher I_{P} and B_{T} Thrust #1

1.5 a)

- Free-Boundary TRANSP calculations of **TRANSP Projections for 100% Non-Inductive** • NSTX-U operations points.
 - See: S.P. Gerhardt, et al, Nuclear Fusion 52 083020 (2013)

Projected Non-Inductive Current Levels for κ~2.85, A~1.75, f_{GW}=0.7

W_{tot} [MJ] 1.0 _____ 0.6 NSTX Data 0.4 0.5 P_{inj} [MW] Heating **Β**_T [**T**] I_P [MA] **Duration** [s] 0.2 NSTX Data 0.0 0.0 0.75 6.8 0.6-0.8 5 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 I_P [MA] 0.75 8.4 0.7-0.85 I_⊳ [MA] 3 1.00 10.0 1.0 10.2 0.8-1.2 5 NSTX Data d) C neutrons [10¹⁵/s] 1.0 12.6 0.9 - 1.33 e^{.r/a=0.2} 1.0 15.6 1.0-1.5 1.5 1.0 **NSTX** Data 6x80 kV, B_τ=1 T 4x80 kV, B_T=0.75 0.01 0.1 End of vear 6x90 kV, B_T=1 T 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 4x90 kV, B_T=0.75 T 1 target I_⊳ [MA] I_P [MA] 6x100 kV. B₁=1 T

Scenarios

Each polygon for a given engineering configuration.

multiple profile and confinement assumptions

1.2

1.0

0.8

NSTX-U

NSTX-U Field and Current Capabilities Will Be Increased Gradually Over a ~3 Year Period

	NSTX	Year 1 NSTX-U	Year 2 NSTX-U	Year 3 NSTX-U	Ultimate Goal
I _P [MA]	1.4	~1.6	2.0	2.0	2.0
I _P I _P [MA ²]	2.0	2.5	4.0	4.0	4.0
Β _τ [T]	0.55	~0.8	1.0	1.0	1.0
B _T B _T [T ²]	0.3	0.65	1.0	1.0	1.0
I _P B _T [MA*T]	0.61	1.3	2	2.0	2
Allowed I ² t Fraction On Any Coil		0.5	0.75	1.0	1.0
I _P Flat-Top at max. allowed I²t, I _P , and B _T [s]	~0.7	~3.5	~3.	5	5

- 1st year goal: operating points with forces up to 1/2 the way between NSTX and NSTX-U, ¹/₂ the design-point heating of any coil:
 - Will permit up to ~5 second operation at B_T ~0.65
- 2nd year goal: Full field and current, but still limiting the coil heating.
 - Will revisit year 2 parameters once year 1 data has been accumulated.
- 3rd year goal: Full capability

NSTX-Upgrade Engineers Developing a List of Mechanical Diagnostics to Assess the Accuracy of their Mechanical Models

Shape/Position & Fueling Control Will Be Developed to Support NSTX-U Operations

- Shape/Position Control Considerations
 - Vertical control of high-A NSTX plasmas found to be problematic when l_i exceeded ~0.6.
 - Boundary and PMI research programs will require accurate control of the strikepoints.
- Years 1 & 2 of ops.
 - Assess vertical stability of NSTX-U plasmas.
 - Improve control as necessary via better algorithms or measurements.
 - Re-tune strike-point controllers for new divertor coils.
- Years 3 & 4 of ops.
 - Implement realtime n=0 stability and loss of control assessments.
 - Connection to Thrust #3.

- Fueling Control Considerations
 - Realization of lowest-collisionality will require high-efficiency fueling.
 - Full utilization of the cryo-pump will require better control of fueling
- Years 1 & 2 of ops.
 - Utilize super-sonic gas injection for improved fueling during the current ramp.
 - Develop realtime density measurements.
 - Assess closed-loop density control during the current ramp.
- Years 3 & 4 of ops.
 - Utilize cryo-pumping + advanced fueling to achieve closed-loop density control during the discharge flat-top.