

Supported by

NSTX-U 5 Year Plan for Non-axisymmetric Control Coil (NCC) Applications

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehiah U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

J.-K. Park,

J. W. Berkery, A. H. Boozer, J. M. Bialek, S. A. Sabbagh, T. E. Evans, S. P. Gerhardt, J. E. Menard for the NSTX Research Team

> NSTX-U PAC-33 B318, PPPL February 19-21, 2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep

Office of

Science

Motivation

- The use of 3D fields to control error fields, RWMs, momentum (rotation), and particle/heat transport is essential to meet NSTX-U programmatic/TSG goals and support ITER
 - Access reduced v^* and high- β combined with ability to vary q, rotation
 - Error fields: To control LMs and TMs at low collsionality
 - Rotation: To improve micro-to-macro stability
 - Particle/heat: To modify pedestal, edge stability, divertor flux
 - RWMs: To achieve high- β advanced operation with active control
- Proposed non-axisymmetric control coils (NCC), if combined with present RWM/EFC, will be a unique and powerful 3D tool for future STs as well as tokamaks

Outline

- Proposed NCC geometry for NSTX-U
 - Partial and full choices for NCC
- Comparison of partial/full NCCs using Figures-Of-Merit
 - Error field control
 - Rotation control
 - RMP for ELM control
 - RWM active control
- Summary
 - Coil performance comparison table
- Future plan for analysis

A range of off-midplane NCC coil configurations is being assessed for potential physics capabilities

- NCC proposal: Use two off-midplane rows of 12 coils toroidally
 - To produce rich poloidal spectra for n=1-6
 - To rotate n=1 4
 - Poloidal positions of 2x12 coils have been selected based on initial studies
- Partial NCCs are also under active investigation
 - Anticipate possible staged installation to the full 2x12
 - 3 best options are presented here and compared with existing midplane coils

2x12

Figures-Of-Merit for EF/NTV/RMP/RWM have been analyzed with partial/full NCCs for NSTX-U

- Various combinations of targets and coils have been investigated
 - NSTX-U target plasmas: TRANSP
 - Stability analysis: DCON
 - 3D equilibrium analysis: VAC3D and IPEC
 - NTV analysis: Combined NTV
 - RWM analysis: VALEN3D
- Figures-Of-Merit defined for each physics element
 - Error field control: NTV per resonant field
 Quantifies selectivity of non-resonant vs. resonant field
 - <u>Rotation control: Core NTV per Total NTV</u>
 Quantifies controllability of rotation by NTV braking
 - <u>RMP for ELM control: NTV per Chirikov</u>
 Quantifies edge particle/heat control without affecting core
 - <u>RWM active control: β Gain</u> Quantifies high-β advanced operation

Selectivity of n=1 non-resonant field vs. resonant field can be greatly enhanced with partial NCCs

- Figure of Merit for error field control: NTV per resonant field
 - High FOM is good for the field application without locking or tearing excitation
 - Variability of FOM can be advantageous for error field physics study
- FOM can be largely enhanced with 2x6-Odd, comparable to 2x12

* Combinations of EFC to NCC are not shown here

 $F_{N-R} \equiv -$

Controllability of rotation by NTV braking can be enhanced slightly by 2x6, and largely by 2x12

- Figure of Merit for rotation control: Core to total NTV
 - <u>Variability of FOM</u> is good for rotation profile and rotation shear control
- Variability of core NTV braking can be slightly enhanced by 2x6-Odd, but will be greatly increased by 2x12

* Same line types are used when only phases between upper and lower coils are different * Combinations of EFC to NCC are not shown here

7

 $F_{N-N} \equiv \frac{T_{NTV}(\psi_N < 0.5)}{T_{NTV}(\psi_N < 1)}$

RMP characteristics can be improved by 1x12 or 2x6, and even more refined by 2x12

- Figure of Merit for RMP: NTV when Chirikov=1 is achieved $F_{N-C} \equiv \frac{T_{NTV}}{(C_{vacuum,\psi_N}=0.85)}$
 - Low FOM is good since it is important to access Chirikov=1 without driving 3D neoclassical transport

- Variability of FOM can be advantageous for RMP physics study
- NTV can be reduced by 1x12 or 2x6, and can be even be decreased by up to an order of magnitude by n=4 and n=6 in 2x12

* Combinations of EFC to NCC are not shown here

RWM control capability increases and physics studies are expanded as NCC coils are added

- Figure of Merit for RWM control: β gain over marginal stability
 - High FOM is good for sustained high- β operation
- RWM control performance increases as NCC coils are added
 - Full 2x12 option: very close to the ideal-wall limit

9

 p_{active}

Summary of analysis

- Figures-Of-Merit analyses indicate 2x6-Odd is more favorable than 12U for error field, rotation control, RMP, RWM control
 - 12U can provide high-n rotating capability, but poloidal spectrum is too limited to give good FOM

Figures of Merit	Favorable values	MID	12U	2x6-Odd	2x12
EF (n=1) $F_{N-R} \equiv \frac{T_{NTV}}{\sum_{\psi_N < 0.85} \delta B_{mn}^2}$	High F _{N-R}	0.017	0.025	0.13	0.13
	Wide ΔF_{N-R}	1.00	1.00	5.65	5.65
NTV (n ≥ 3) $F_{N-N} \equiv \frac{T_{NTV}(\psi_N < 0.5)}{T_{NTV}(\psi_N < 1)}$	Wide ΔF_{N-N}	1.00	2.00	3.97	19.6
RMP (n ≥ 3) $F_{N-C} \equiv \frac{T_{NTV}}{(C_{vacuum, \psi_N} = 0.85)^4}$	Small F _{N-C}	0.25	0.021	0.019	0.005
	Wide ΔF_{N-C}	1.00	10.5	22.1	252
RWM (n=1) $F_{\beta} \equiv \frac{\beta_{active}}{\beta_{no-wall}}$	High F _β	1.25	1.54	1.61	1.70

Future analysis plans

- Additional configurations will be investigated
 - Combined coil configurations between NCCs and EFC, including different Ampere-turn ratios, and with constraint of only 6 independent power supplies
 - Target plasmas with different q_{min} and q-shear
 - VALEN3D calculations of conceptual design of optimized sensors for RMP control
- Important coil configurations will be identified based on FOM and coupled with varied collisionality and rotation
 - Present IPEC-NTV calculations will be performed
 - NTVTOK, MISK, MARS-K calculations will be added
- Advanced computations will be performed for selected coil configurations, target plasmas, kinetic profiles
 - POCA will be used for selected cases
 - FORTEC3D or XGC0 can be tested for a few limited cases

1x6 array can provide large selectivity of non-resonant to resonant field

- 1x6 PPU array produces comparable resonant field per currents with very different non-resonant field contents
- "Non-resonant field selectivity", defined by NTV torque per (dB₂₁)², can be varied by an order of magnitude if PPU and EFC currents are optimized
 - This capability is essential to understand "non-resonant error field" effects on locking and tearing in tokamaks including ITER MS ITPA WG9

*PPU currents per EFC (1kAt is the base) should be further optimized (Likely more than 2)

Local rotation control will be possible to large extents if n=1 and n=3 PPU+EFC are utilized

- 1x6 PPU, when combined with EFC, can produce spatially very different NTV braking profiles
- Local control of rotation and rotation shear will be possible to large extents if combined with off-axis NBI beams
 - This capability is essential to achieve advance control of macroscopic to microscope instabilities MS, TT, EP

*Note torque profile is the integrated torque from the core

*Note damping profiles assume NTV alone, but should be combined with NBI and momentum diffusion model

PPU can increase figure of merits for RMP, which can be tested against ELM triggering capability

- 1x6 PPU, when combined with EFC, can meet Chirikov overlap criteria with various NTV braking characteristics
 - Figure of merit can be defined by NTV when Chirikov overlap parameter = 1
- Wide range of figure of merit can be produced when PPU is optimized with EFC, and can be tested for ELM modification
 - n=1 can give 1~10, and n=3 can give 0.1~1.0 Nm per Chirikov
 - ELM triggering vs. suppression threshold can be studied BP

Another 6-array can largely extend n=1 and n=3 field selectivity, rotation controllability, FOMs

- Another 6-array can largely extend "non-resonant" and "resonant field selectivity" by changing alignment between fields to resonant helical pitch
- RMP figure of merit can be also further increased or decreased
 - Particularly 2x6 is essential to decrease torque/dB₂₁², and thus increase "resonant field selectivity", and also to decrease torque per Chirikov
- Optimized currents are expected to greatly improve n=1 capability MS, BP

*All coils are in the same currents (1kAt is the base) and ratio is not optimized

2x6 array, if optimized (B#), NTV braking controllability and RMP FOM variability can be largely enhanced

- 2x6 array can increase NTV braking controllability when option B# is used and EFC is nulled or optimized MS, TT, EP
- Option B is also effective to produce good RMP, by decreasing NTV per Chirikov

*Note torque density profile for n≥3 is always peaked in the edge for these examples, which means that rotation profile will be primarily scaled down by momentum diffusion, but other q-profile equilibrium can be different

1x12 array NCC will be important to explore n≥3 spectral variations and rotation capability

- 1x12 upper array alone can enhance rotation controllability and RMP characteristics using natural attenuation of high toroidal harmonics
- ITER aims n≥3, and 12 toroidal array will allow detailed n≥3 physics studies with 3D diagnostics by field rotation
- Preliminary studies for full NCC with 2x12 (without combined with EFC) showed an-order-of-magnitude variation in rotation and RMP FOM can be easily produced MS, TT, EP, BP

Full NCC can provide high-β advanced operation near ideal-wall limit by active RWM control

- Full NCC, if combined with idealized sensors, will allow high-β advanced operation even near ideal-wall limit by active RWM control *Ms, Asc*
 - Idealized sensors: RWM control up to $\beta/\beta_{no-wall}$ = 1.70 ~ ideal wall limit
 - Present sensors: lower performance, but can be optimized with state-space controller

