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Boundary Physics program in NSTX-U contributes to
critical research areas for ITER/tokamaks and STs

High-level goals for NSTX-U 5 year plan

Demonstrate stationary non-inductive operation
Access reduced v* and high-
Develop and understand non-inductive start-up/ramp-up

Develop and utilize high-flux-expansion snowflake

divertor and radiative detachment for mitigating very
high heat fluxes

Begin to assess high-Z PFCs + liquid lithium

' NSTX-U
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Boundary Physics program in NSTX-U contributes to
critical research areas for ITER/tokamaks and STs

« Boundary Physics Thrusts (and outline of the talk)

— BP-1: Assess and control pedestal structure, edge transport and
stability
» Pedestal structure, transport and turbulence studies
* ELM characterization and control

— BP-2: Assess and control divertor heat and particle fluxes
« SOL transport and turbulence, impurity transport
» Divertor heat flux mitigation with impurity seeding and divertor geometry

« This talk: Recent NSTX Boundary Physics progress, Goals
and Plans for Pedestal, ELM, SOL and divertor research in
2014-2018
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Planned NSTX-U facility upgrades enable access to new
parameter space and unique capabilities

Planned upgrades Operations Boundary Physics area
(NSTX = NSTX-U) year
available
Pusi =9 2 12 MW (5 s) 1-2 Pedestal structure and ELM stability, L-H,
7.5 2>15MW (1.5 s) divertor heat flux (12 2 15-20 MW/m?)
P/R~10-> 20
P/IS ~0.2->04
l, =1.3>2MA 1-2 L-H transition, pedestal structure and
B, =05->1T stability, SOL width, divertor heat flux
Pulse length 1.5 2 5-10 s 1-2 Steady-state divertor heat flux mitigation,
density and impurity control
Axisymmetric PF (divertor) 1-3 Plasma shaping, L-H, divertor
coils PF1A, 1B, 1C, 2L configuration control
Non-axisymmetric control 3 ELM control and pedestal transport
coils
Divertor cryogenic panel 3 Pedestal stability, density control, radiative
divertor with impurity seeding
Molybdenum plasma-facing 2 Core and pedestal impurity density,
components divertor heat transport regimes
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Boundary Physics program in NSTX-U contributes to
critical research areas for ITER/tokamaks and STs

* Boundary Physics Thrusts (and outline of the talk)
— BP-1: Assess and control pedestal structure, edge transport and
stability
* Pedestal structure, transport and turbulence studies
 ELM characterization and control

— BP-2: Assess and control divertor heat and particle fluxes
« SOL transport and turbulence, impurity transport
 Divertor heat flux mitigation with impurity seeding and divertor geometry
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Pedestal studies focus on testing applicability of peeling ballooning

ngd kinetic ballooning to limit pedestal heights widths, and gradients

n=1-15, (Y/m,/2) contours

* Peeling ballooning limits on .20 o
. . . D t o
pedestal height consistent with 5§ s T
. = 1. o Lithium SN
ELMy/ELM-free operation By 0 -
— Challenge: applicability of g 10 R
diamagnetic stabilization E B
~ Lithium and 3-D fields usedto ~ 4 6 8 10 12 2 4 65 8 1 1@
manipulate profiIeS Normalized pressure gradient (o) Normalized pressure gradient ()
0.16

 Kinetic ballooning being tested as a
mechanism to limit width

- Scaling with B¢ stronger in STs
than higher R/a

- No evidence yet of KBM

0.4 (ﬁeped)1.05

~

(=]
)
N

Pedestal width (1)
(=]
*

fluctuation
0.04
Diagnostics: 0.00
30 point MPTS (NSTX) = 42 point MPTS (NSTX-U) 01 = 03 a.'%ﬂ;d)a.'r o
(7]
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Understand role of different microinstabilities for
. different transport channels for pedestal control

4

« TEM/KBM modes appear dominant in near-edge Lithium
region of NSTX pedestal 3! No lithium
— GENE: ITG/KBM-TEM hybrid modes and microtearing <
— GS2: hybrid TEM/KBM dominant > ‘g

* No lithium: microtearing modes linearly unstable

Lithium: microtearing stable, TEM unstable, ETG unstable
near separatrix

* Measured correlation lengths at °-"j.$“;_~-.\ ‘ Theory
pedestal top are consistent with o TN (non-linear  Experiment
theory (XGC1) §a “ XGCi1code)
- Spatial structure exhibits ion- _ 3cm 2—4cm
scale microturbulence E ] radial (reflecto-
- Compatible with ITG modes and/ " __ ] metery)
or KBM -0.4- » QOIOida[ 11 cm 10(_Béé)cm
. . _0.6_- ‘ & g
Dlagn.ostlcs (NSTX-U): | I Z 7‘ R = 138m okt ng %
42 point MPTS, reflectometry, 48 point BES -1
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ELM evolution and divertor/wall heat flux studies in NSTX-U
to focus on acceptable ELM heat flux scenarios

D, [au] W [KT]

 Many ELM regimes observed in NSTX: TP W\/
Type |, lll, V, mixed, (and also Type Il in TN AT Type | ‘
narrow operational windows) s ng

- Phenomenology dependent on v* 4, Psoy, U ™ Typelll |
|, shaping oy g —

« ELM control techniques sl AL pe v

- Lithium granule injector (tested at EAST) K e B TR S

- Lithium evaporation Mj\ g ]
- Enhanced Pedestal (ELM-free) H-mode T W
- 3-D fields (h=3 RMP) “""”“j‘ v | ““‘f‘f”

+ Heat flux from Type | & Il ELMs measured L b= 0.8 MA |
to be very high; small Type V ELMs have }

20F *
low heat flux — %

- Type | ELMs triggered with 3-D fields can
reduce per ELM energy loss and peak heat
flux, but slower than 1/vg

— Toroidal asymmetry increases with ELM of - 1 -
0 20 40 60 80

peak heat flux ELM Frequency (Hz)
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o
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Plans for pedestal transport, turbulence and ELM control

research

* Year 1of 5Year Plan

Continue cross-machine comparison of pedestal structure with DIII-D and Alcator C-Mod
Continue gyro-kinetic modeling of electromagnetic turbulence

* Years 2-3 of 5 Year Plan

Pedestal structure and turbulence vs engineering and physics parameters

ELM control with lithium coatings, lithium granule injector, and 3D fields

Access to new operational regimes (enhanced pedestal H-mode, I-mode)

Initiate assessment of SOL current generation and impact on ELM models and control
Re-establish parameter regime for observation of edge harmonic oscillations

* Years 4-5 of 5 Year Plan

ELM control with off-midplane non-axisymmetric control coils
Compare pedestal structure and turbulence with edge transport models, XGCO and XGC1
Assess cryopump and molybdenum PFC impact on pedestal collisionality and control

Diagnostics: MPTS, CHERS, BES, reflectometry, GPI

@ NSTX-U
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Boundary Physics program in NSTX-U contributes to
critical research areas for ITER/tokamaks and STs

« Boundary Physics Thrusts (and outline of the talk)
— BP-1: Assess and control pedestal structure, edge transport and
stability
» Pedestal structure, transport and turbulence studies
 ELM characterization and control

— BP-2: Assess and control divertor heat and particle fluxes
« SOL transport and turbulence, impurity transport

« Divertor heat flux mitigation with impurity seeding and divertor
geometry
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NSTX-U data will help reduce SOL width scaling uncertainties

BP-2

for ST-FNSF and ITER

« SOL width scaling

— InNSTX: A,™d ~ 116, independent of P and B,
«  For NSTX-U (2 MA): A,m¢=3+0.5 mm
— Multi-machine database (Eich IAEA FEC 2012); ——>

quid (mm) = (0.63+/-0.08)x Bpol,MP'1'19
« For NSTX-U (B,~0.55 T): A,md~ 1.3 mm

» Divertor peak heat flux scaling

qpeak~ I:)SOL and CIpeak - Ip
- For NSTX-U qyeqy ~ 20-30 MW/m?

Preat (1 - frad)fout/totfdown/tot(l - fpr) sin &

_|® MAST | |
v

= AUG
A DIII-D

Gpk =

Diagnostics: IR cameras, MPTS, Langmuir probes

— Divertor Thomson scattering (incremental) valuable for
pressure/temperature balance between midplane, x-point, and
divertor regions for heat transport studies

27TRSP fea:p)\q| |

R?=0.86 s
% 02 04 06 08
BpoI,MP [T]
— Divertor peak heat flux gH =l
- (MW/mA2) o ]
- 0.8 MA -
[ 1.0MA .-~ Bg ]
[ 1.2MA -~ -
i o-H oo ]
o
/D -
R > 3 4 5
Psor (MW)
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SOL turbulence studies will help assess relative
szimportance of turbulent and drift-based transport

10

o

« Comparison of Agy With SOL models
— Parallel transport: conductive/convective, cross-field : ® RP-osas

.o
collisional / turbulent / drift £ e ‘Q:
. =9 %
— Goldston drift-based model > @ v g L85 MAST|
- % mid g NEE C-Mod
* Ao ~ (2a/R) pgy for NSTX-U: A,m4~ 6 mm i 4 .rv%v R AT
— Exploring mechanisms setting steep pressure gradient Ty |

N

region and connection to SOL width
— XGCO (drift-kinetic): A,;™d ~ |10
— SOLT (fluid turbulence): |, scaling is weaker than "HD
observed

» Comparison of GPI, BES data and simulations
elucidate on SOL transport and L-H transition
— Blob formation, motion, interaction with sheared flows
— Role of magnetic X-point geometry
— Effects of 3-D fields on turbulence
— Role of atomic physics

2
N

n
N E %
bb\
o
<]
[
m &
10

6 8 10
o )

"GPl SOLT

Diagnostics: MPTS, GPI — multiple views, BES, reflectometry, Langmuir probes
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Snowflake divertor geometry has benefits over standard
BBz divertor

Standard divertor Snowflake-minus Exact snowflake

« Second-order null 0}
- B,~0andgradB,~0 £
N
« Significant divertor heat
flux reduction due to 1
geometry confirmed in {
NSTX and DIII-D
21 T
05 10 15
R (m) O
« Outstanding questions __ !spiBpml

- Magnetic control of up-down symmetric snowflake
- Effect on pedestal and ELMs

- ELM convective heat transport in null point region
- SOL and divertor turbulence disconnection

- X-point transport and drifts

- Compatibility with cryopumping
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BP-2

Multi-machine snowflake divertor studies validate the
snowflake divertor concept for NSTX-U and ST-FNSF

. . 20 e ‘ (MW/r Aoy T NSTX
. Snowflake divertor in NSTX (2009-2010) | et s (D NST:
. . . . . 150 standard divertor (0.354 s) |
— High confinement, core impurity reduction — forming snowflake (0.530's)
. vgy s I formi flake (0.674 s) |
— Destabilized ELMs suppressed by lithium 1ot raciative snowflake (0.8995s)_<

Reduced heat flux by x 2-5 between and during ELMs | ]
Outer strike point radiatively detached or j §
0 5640508 07 R (m)

 Initial DIII-D experiments (2012)

Used NSTX-style snowflake control scenario DIlI-D
Long pulse (38) SnOWﬂake’ hlgh Tes H(89P) 22 IRTV Heat Flux Divertor Radial Profiles vs. Time
Heat flux reduced x 2-3, strike point attached § 0 n R
Reduced AW, and gFM_, (with D, seedingT) *

[

s
o

2 E

M ajor Radius \invg2dr2 150672 (D3D)
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Simulations of snowflake divertor configuration for
Bp2 NSTX-U yield optimistic projections

L \fhj"‘b \\l\\\l\\\l\\
04 06 08 10 12 14 04 06 08 10 12 14
R(m) R(m)

« Significant geometry effects
 Multi-fluid edge transport \ |

model (UEDGE) © stnin Smowtiake

— Heat flux reduction with 4% carbon

by geometry and radiation in outer bx (m) > U
strike point foxp 20 60-100
» for 12 MW NBI case from 15 MW/m? to Ve (M) 0.070 0.128
2-3 MW/m? Outer divertor heat flux (MW/mA2)
— Inner divertor detached A Standard -

Snowflake 1

10
— Particle removal by cryopump 5 ;
results in reduced radiation 07 = T o
« But still significant heat flux reduction | ~ RRospm
due to geometry >FInner divertor heat flux (MW/mA2) _
4 Standard
3 Snowflake 3
of total E
1E ,:-_‘:.-.=:::'_/
0L ----- ‘ _ W/orad. - E
-5 0 5 10 15 20
R-R_osp (m)
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Impurity-seeded radiative divertor with feedback
Bp2 control is planned for NSTX-U

« In NSTX, heat flux reduction in radiative divertor ~ °| ®wmg ™ """ a" .: ]
compatible with H-mode confinement was o |- 08 1A my
demonstrated with D, or CD, puffing | L E ]

« Seeded impurity choice dictated by Z;,,, and PFC | = s

— Li/C PFCs compatible with D,, CD,, Ne, Ar seeding ° L I
— UEDGE simulations show Ar most effective 0 S S
PsoL (MW)

« Too much argon causes radiation collapse of pedestal
« Feedback control of divertor radiation via impurity particle =

Peak heat flux (outer target)

balance control oo R o
. . E 6 =@=SFD
— Cryopump for particle removal + divertor gas s,
injectors :
— Real-time control signal diagnostics identified for s 1 s 2
Radiated power
NSTX-U g o
 PFC temperature via IR thermography or thermocouple s ! -;'STD'tota:
[} SFD, tota
- Thermoelectric current between inner and outer divertor £* u 57D, outer div.
* Impurity VUV spectroscopy or bolometry 2 —aZ 85D, outer div.

0
* Neutral gas pressure or electron-ion recombination rate 0 05 1 15 2
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Plan for SOL and divertor research

BP-2

 Year 1 of 5 Year Plan
— Continue analysis of SOL width database and comparison with models
— Collaboration with DIII-D on snowflake and radiative divertor experiments

* Years 2-3 of 5 Year Plan
— Establish SOL width and divertor database vs. engineering and physics parameters
— Re-establish edge turbulence measurements (GPI, BES, cameras, probes)
— Initial radiative divertor experiments with D,, CD, and Ar seeding and lithium

— Develop snowflake divertor magnetic control and assess pedestal stability, divertor
power balance, turbulence, 3D fields as functions of engineering parameters

— Comparison with multi-fluid and gyro-kinetic models

* Years 4-5 of 5 Year Plan

— 3D edge/SOL turbulence structure vs. edge plasma parameters, magnetic divertor
geometry, and 3D fields and comparison with 3-D turbulence models

— Snowflake divertor with cryopumping and molybdenum PFCs in H-mode scenarios
— Radiative divertor with feedback control of impurity seeding and cryo-pumping

Diagnostics: MPTS, CHERS, BES, GPI, IR cameras, Langmuir probes, spectroscopy
« Divertor Thomson scattering (incremental) highly beneficial for model validation
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Boundary program focuses on advancing pedestal physics,
power and particle handling with new NSTX-U capabilities

« Pedestal physics: confirm consistency with peeling
ballooning, and test applicability of kinetic ballooning
- Use lithium conditioning and 3-D fields as a way to manipulate the
density and pressure profile
* Power and particle handling: further develop snowflake and
radiative divertors

- Test key predictions of snowflake configuration, and evaluate
synergy with radiative divertors, graphite and molybdenum plasma
facing components

- Evaluate compatibility with cryopumping
* Planned research aims at providing pedestal and divertor
physics basis for ST-FNSF
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Backup
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Thrust BP-1: Assess, optimize, and control pedestal
structure, edge transport and stability

« Characterize pedestal structure using the extended parameter
range of NSTX-U

— Measure turbulence and zonal flow dynamics with beam emission
spectroscopy, reflectometry, and gas-puff imaging diagnostics

— Assess maximum achievable pedestal height, variation in pedestal
structure with increased field, current, power and shaping

 Increase control of pedestal transport and stability
— Density profile modification with improved impurity and density control

— ELM triggering/suppression with 3D fields from mid-plane and off-
midplane partial-NCC coil-sets and triggering with Li granule injection

— Optimize enhanced-pedestal H-modes with above tools
— Excite edge harmonic oscillations to increase particle x-port (increm.)
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Thrust BP-2: Assess and control divertor
heat and particle fluxes

» Investigate SOL heat and particle transport and turbulence
— Extend heat flux width studies to lower v, higher B+, I, and Py,
— Compare data to multi-fluid turbulence and gyro-kinetic models

 Investigate the snowflake divertor for power and particle
control
— Develop magnetic control of conventional and snowflake divertors
— Study steady-state & transient heat & particle transport, divertor loads
« Vary magnetic balance, feedback-controlled impurity seeding rate
« Develop highly-radiating boundary solutions with feedback
control, determine divertor detachment operating window

« Validate cryo-pump physics assumptions, perform initial
density control studies, determine range of accessible density

« Assess impact of high-Z metal divertor PFCs on H-mode
confinement, impurity accumulation, power exhaust
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Divertor Thomson Scattering system would significantly

enhance NSTX-U Boundary research capabilities

* Physics contributions

ELM and inter-ELM divertor transport

SOL width scaling, role of X-point heat transport
Radiative detachment model validation

Snowflake divertor properties, incl. X-pt B, measurements

Divertor plasma-surface interaction and impurity transport
studies, erosion rates via spectroscopy

« A conceptual geometry identified for NSTX-U
« Conceptual system design underway

9116313.00900.NfHz0+QF

=/

“11E
-12F

-13F

g116313.00900.NfHz0+Qe

N

9116313.00900.NfHz0+Qg

\—

-14f 145 3
157 -1 57 1.5 4
16 -16f 160 f
) 0.4 0.6 0“8 1|.0 1‘.2 - OI.4 OI.6 0‘.8 1‘.0 1‘.2 0‘.4 O‘.6 0‘.8 1‘.0 1‘.2
R (m) R (m) R (m)
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Edge Harmonic Oscillations

Rob Goldston, Eric Fredrickson, Neal Crocker, Mike Jaworski

shot 138752, t = 677 — 687 ms

i A
Mirnov nss Reflectometry
shot 141149, no DOPPIEPCOPI‘ 3.5 .......... n=
'!@@bﬁ N gl N=7 M
o E 25p SUTHTNINNEY 4 ST
° n= = :
- Qf e S A
6 15F -------------------------------
; ¥3 1;5 1.4 1.45
; A - ** R [m]
q 4
: Bhe “:"%;\:- 4 <0
n 2 L Gl 6 -
; N ~ Langmuir
y MR L AN ¥ 15 1
< Probes
el 2 B
" c 10 1
¢ g
g s
0,2 0.4 0.6 0.8 1,0 1.2

0
0.1 02 03 04 05 06 0.7 08 09 1
Time [s]

EHO'’s limit density rise in QH modes on DIII-D. They are
observed on NSTX with Li, but don’t seem to limit density.

However EHOs do affect the edge and SOL strongly.
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Driving Edge Harmonic Oscillations

MHD calculations indicate we can amplify edge kinks by driving

Key to Active Edge Control?

Jong-Kyu Park

HHFW vs NSTX EHO

| HHFW KAt n_5 (IPEC)
| HHFW 1kAt h=6 (IPEC)

| NSTXEHO n=5 (Reflectometry)
NSTX EHO n=6 (Reflectometry)

10

E -
|§. L
5

i

w;ﬂ,ﬁ

o_/f./’./T/TJ

1.30 1.35
R [m]

HHFW antenna straps at audio frequencies.

.40

1.45

Can this give us external control over edge pressure gradient
(and so ELMs) and/or the SOL width?

@ NSTX-U
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Snowflake divertor geometry has benefits
over standard X-point divertor geometry

* Predicted geometry properties in snowflake divertor (cf.
standard divertor)

— Increased edge shear :ped. stability
— Add’l null: H-mode power threshold, ion loss

— Larger plasma wetted-area A : reduce q;,

— Four strike points : share g,

— Larger X-point connection length L, : reduce g,

— Larger effective divertor volume V;, ciner. P, Pex

Pheat (1 _ f?“ad)fout/totfdown/tot(l - fpfr) Sin o
27TRSPf€$p)\Q||

ka =~
f _ (Bp/Btot)MP
P (Bp/Btot)OSP

Awet = 21 R fe:r;p )\q“

D. D. Ryutov, PoP 14, 064502 2007
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Snowflake divertor geometry takes advantage of second-

order poloidal field null properties

BP-2
Standard divertor Snowflake-minus Exact snowflake
 Second-order null o .
- B,~0andgrad B, ~ 0 (Cf. first- S
order null: B, ~ 0) N
* Obtained with existing
divertor coils (min. 2) -1t

« Exact snowflake
topologically unstable

141240

0.905 ms

1.0

R (m)

1.5 0. 1.
R (m)

0.

| ]
1.0 1.5

0.1

02 03 04
IB_p/B_pmil

05

» Predicted geometry properties in snowflake divertor (cf. standard divertor)

Increased edge shear

Add’l null: H-mode power threshold, ion loss

Larger plasma wetted-area A,
Four strike points

Larger X-point connection length L,
Larger effective divertor volume V;,

‘ped. stability

: reduce q,;,

: share q,,

: reduce q,,
ciner. Py, Peox
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NSTX: good H-mode confinement properties and core
impurity reduction obtained with snowflake divertor

Standard, Snowflake

8 n_e (x10M9 mA-3
4L -
0 *

1.0

0.5F i

10 c_C (%)
5+ _
0 R=138 cm 141240
5| Divertor Da. (a.u,) W
0

00 02 04 06 08 10 1.2
Time (s)

NSTX

0.8 MA, 4 MW H-mode

k=2.1, 6=0.8

Core T,~0.8-1keV, T,~ 1 keV
Py~ 4-5

Plasma stored energy ~ 250 kJ
H98(y,2) ~ 1 (from TRANSP)

ELMs

= Suppressed in standard divertor
H-mode via lithium conditioning
= Re-appeared in snowflake H-
mode
Core carbon reduction due to
* Type | ELMs

* Edge source reduction

« Divertor sputtering rates reduced due
to partial detachment
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Impulsive heat loads due

to Type | ELMs

are mitigated in snowflake divertor
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Snowflake divertor is a leading heat flux

mitigation candidate for NSTX-U

« Single and double-null radiative divertors and upper-lower snowflake
configurations considered
— Supported by NSTX-U divertor coils and compatible with coil current limits
— ISOLVER modeling shows many possible equilibria

» Impact of changing /,, on snowflake minimal
* Reduced divertor coil set can be used for snowflakes

I
i

i ~\2
i 7\
W

il

Z(m)

|
t

N pn b b bena b
04 06 08 10 1.2 14 16 18

R(m)

NSTX-U double-null

NSTX-U double-

snowflake-plus

Z(m)

R(m)

NSTX-U double-

snowflake-minus

-1.0[
1.2}
-1.4f
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40T

NSTX-U simulation
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Four divertor coils should enable flexibility in boundary
shaping and control in NSTX-U

= Avariety of lower and both lower and upper divertor snowflake
configurations are possible in NSTX-U with four coils per divertor
* |SOLVER free-boundary Grad-Shafranov solver used
e Four coils can be used to control up to four parameters (X-pts, OSP, etc)

contour L. (m) 383 204 13.9

:LX(m) 165 40 22 16 15

NSTX-U |
PFC

PFaL -={ Angle 16 0.8 099 30 39
1 (deg.)
| PRIBL PeicL [ PR 1 = X2-3in plasma wetted surface
02 04 06 08 10 12 14 16 area and connection length vs

standard divertor
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Simulations of snowflake divertor configuration inform heat
flux mitigation scenarios in NSTX-U

* [ISOLVER modeling shows a variety of up-down 1 Outer divertor heat flux (MW/m"2)

Standard
Snowflake 1

symmetric snowflake (+/-) configurations possible 10

— Impact of changing /,, on snowflake minimal oSS em————
. . 0 10 20 30
— Reduced divertor coil set can be used for R-R_osp (M)

SnOWﬂakeS i Inner divertor heat flux (MW/n;"2)c| .

tandar E

- UEDGE simulations predict heat flux reduction il N
with carbon by geometry and radiation o D

-5 0 5 10 15 20

« Particle removal by cryopump results in reduced R-R_osp (m)
radiation in snowflake

Peak heat flux (outer target)

amgu=STD
e=d= STD with cryo
e=fil=SFD
«=[3= SFD with cryo

0.97 0.98 0.99 1
Target recycling
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UEDGE settings

Heat flux width

. Single null grid based on LRDFIT equilibria (129x129) 10
* Inertial neutral model is used with recycm=-.5 g 10.0
+ Fixed fraction Argon is varied from 0.5 to 3.5% =
*  Fixed fraction Neon is varied from 0.5 to 6% e 5.0
« 0.9<y<1.055 =
* Dpep =1 (in core) > 0.5 (in SOL) m?/s 0.0

—  Cubic rise from core boundary to separatrix 05 1 15 2 25 3
Thermal diffusivity y; .= 1 (in core) = 3 (in SOL) m?/s f_chi

—  Cubic rise from core boundary to separatrix
 Recycling = 0.99 Flux tube width ~3.5 mm at OMP

* Power across y=0.9 surface Py, = 9 MW
« Zero flux BC for neutral D at core

« Psi=0.9 density value determined by fixing particle ﬂux
through core; based on 60 A for 4 MW NBI power 9
180 A at Pgp=9 MW

« 300 A centerstack puff at inner midplane.
* No drift effects

« Heat flux width analyzed for STD divertor only.

— ~3 mm heat flux width expected; f,=1.0 (5 mm) is not
unrealistic

Total voI = 0263m3 _ Total vol = 0321 m’

............
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Projections with UEDGE edge multi-fluid
lel for NSTX-U imisti

A Standard T N \\\ \\"
IR divertor N

~ J
) ar 7\

? ) = (INSTX Upgrade |

1 1 1 1 " 1 1
4 5 b .7 .8 5 4 5 6 7 .8 .9

= Fluid (Braginskii) model for ions and electrons
= Fluid for neutrals

= Classical parallel transport, anomalous radial
transport

= Core interface:

* Grids extend from
psi=0.9 to psi=1.2

« STD grid covers 3.1 cm
outside the separatrix at

the outer MP
* Psorgo=5 7, 9 MW « SNF grid covers 3.4 cm
= D=0.1-0.5m%s outside the separatrix at
" Xei=1-2m?s the outer MP.
" Ry =0.99

= Carbon 5%
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In modeled NSTX-U snowflake configuration
magnetic geometry shows clear benefits (cf. standard

divertor)

Connection length vs. R_div Flux expansion vs. R_div
B o o o o o o o o o e LIS B B B i e
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SOL width studies elucidate on heat flux scaling projections
Bp.2 for NSTX-U, ST-FNSF and ITER

« Goal: compare SOL width scalings with models

« SOL width scaling
— In NSTX: A md ~ |10
« For NSTX-U (2 MA): A,Md = 3+0.5 mm —_—
— Multi-machine database (Eich IAEA FEC 2012):
Ag™d (mm) (0.63+/-0.08)x Bo yp - 1?
For NSTX-U (B,~0.55 T): A, ™4~ 1.3 mm
— Comparison with SOL models

» Parallel transport: conductive/convective, cross-field :
collisional / turbulent / drift

 (Goldston heuristic model: VB and curvature drift motion
sets SOL width Ag5, ~ (2a/R) p;, Spitzer thermal
conduction sets T, S

— For NSTX-U: quid ~6 mm

» Diagnostics: IR cameras, MPTS, Langmuir probes
— Divertor Thomson scattering (incremental) desirable

g,measured [mm]
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SOL width and divertor heat flux studies in NSTX inform
NSTX-U and ITER divertor projections

« Completed FY 2010 DOE JRT T T e
H . . . 2.5+ ¢ 150 mg Li, high 8 H
A" characterized in experiment . ¢ 150 maLi i sl ane)

u mg Li, high 8

 independent of P55, and B,

» constant with increasing f,,

- contracts with increasing drsep; and I: A ™9 ~ 16
(DUI-D: A Mid ~ ] 12 Alcator C-Mod: xqm'd ~ 1,7 0) osl

* Aqcontracts with increasing lithium deposition e _‘

— and modeled

8.5 0.6 07 08 0.9 1 1.1 1.2 1.3

» XGCO modeling reproduced /, dependence —) o
(NSTX: Amd ~ 7195 DHI-D: ~ 1,98 ; C-Mod: ~ | 702 ) 2|
« SOLT modellng weak A, scallng with P,; |, scaling 1 NSTX128(P)
is weaker than observed. '
+ Further studies :
— Connect A" to pedestal width and edge .
turbulence . |
— A "“data analysis for ITER / future STs R R
 For NSTX-U parameters, A, = 3+£0.5 mm PAC27-10 || PAC27-11
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SOL width studies in NSTX elucidate on divertor projections
for NSTX-U, ST-FNSF and ITER

« JRT 2010 on heat transport H c I
! 82 +0. —-083+£0.32
— A Md contracts with increasing [.; A mid ~ | -16 12 @37 37101 08401l
q g p: q p é ANSTX 386+0.18 -133+0.16

« Comparison with SOL models
— Parallel transport: conductive/convective, cross-
field : collisional / turbulent / drift
— XGCO reproduced /, dependence A,/™? ~ 70 4l
— SOLT: /, scaling is weaker than observed of

* Pgq,, collisionality, L, /R set cross-field transport and e T S
turbulence structure that affect 4, V7 R

— Goldston drift-based model of SOL flows > w0 CMOD

« Attached H-mode regimes ) NSTX a

« VB and curvature drift motion sets SOL width A5y, ~
(2a/R) p,, Spitzer thermal conduction sets T,

— Exploring mechanisms setting steep pressure
gradient region and connection to SOL width

 Projections to NSTX-U i #’
- A,/m=3+0.5 mm PAC29-12

— As Qpeak ~ Ip and qpeak~P soLs Qpeak ~ 20-30 MW/m? PAC29-14 AGoldston (MM)

Asol (Mm)

_
M. Makowski, APS 2011
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