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Advanced Scenarios and Control Group Goals 

2 

ASC Programmatic Goal From The 5 Year Plan: !
Develop the basis for integrated, steady-state operation and 

axisymmetric control for next-step STs, while helping resolve key 
scenario and control issues for ITER!

!
!

ASC Operational Goal From The 5 Year Plan:!
Establish stationary, 100% non-inductive operation, and partial 

inductive operation up to IP=2 MA, for 5 seconds over a wide range of 
Greenwald fractions, collisionalities, and β values!

!
!

This talk will focus on research and operations aspect in FY14-FY16 
targeting these goals!

!
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Outline 
(organized chronologically) 

•  FY-14 control research to support milestones and 
five year plan research 

•  Research operations preparations 
•  Scenario and control research activities for the first 2 

years of operations 
–  Long-Pulse and High Current Scenarios 
–  Non-Inductive Scenarios 
–  Profile Control Research 
–  Heat Flux Control 
–  Disruption Avoidance 
–  NBCD Studies 

Modeling of non-inductive start-up/ramp-up discussed in talk by F. Poli.!
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Outline 
(organized chronologically) 

•  FY-14 control research to support milestones and 
five year plan research 

•  Research operations preparations 
•  Scenario and control research activities for the first 2 

years of operations 
–  Long-Pulse and High Current Scenarios 
–  Non-Inductive Scenarios 
–  Profile Control Research 
–  Heat Flux Control 
–  Disruption Avoidance 
–  NBCD Studies 

Modeling of non-inductive start-up/ramp-up discussed in talk by F. Poli.!

R14-3 Milestone !
Develop advanced axisymmetric control techniques in sustained high 

performance plasmas!
Supports five year plan thrust 2 goals!

!

Current Profile Control!
Dan Boyer (ORISE Fellow) and E. Schuster Group (Lehigh U.)!

!

Rotation Control!
Collaboration with PU Mechanical and Aerospace Engineering!

Primary effort by I. Goumiri (graduate student)!
!

TRANSP is the Primary Tool for Full-Physics Modeling!
Running code with an “expert file” that allows it to be used as!

 a virtual experiment!
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Reduced Model For Current Profile Evolutions Will Guide 
Profile Control Design 

•  Control-oriented dynamic model based on 
magnetic diffusion equation 
–  Fixed model parameter profile shapes; 

magnitudes scale with global parameters 
•  Electron density and temperature, resistivity, 

non-inductive current drive, bootstrap current  
–  Fixed magnetic geometry assumed 

•  Used to design dynamic observer for 
profile estimation 
–  Improves real-time measurement quality 

(denoise, account for non-converged 
rtEFITs) 

–  Enables preliminary control experiments 
prior to real-time MSE 

•  Reduced further for control design 
–  Linearized around operating point to obtain 

state-space model for modern control design 
•  Process similar to that used in successful 

q-profile control at DIII-D 
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First Use of Model is For Combined βN & li Controller 

•  Optimal control, considering six 
individual beams as feedback 
actuators 

•  Plans for FY14 
–  Validate profile estimation scheme 

using NSTX data. 
–  Explore controllable range of variation. 
–  Design controllers for beta and q profile 

•  Simulate in TRANSP using expert file 
•  Incorporate additional feedback 

actuators (density, outer gap, Ip) 
–  Prepare PCS algorithms for: 

•  βN & li  
•  βN & q 

Dan Boyer, ORISE + Lehigh U. Control Collaboration !
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Non-resonant Neoclassical Toroidal Viscosity (NTV) physics 
will be used for the first time in rotation feedback control 
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q  NTV torque: 

133743!

 I. Goumiri (PU), S.A. Sabbagh (Columbia U.), D.A. Gates, S.P. Gerhardt (PPPL) !
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Plasma rotation control has been demonstrated for the first 
time with TRANSP using NBI and NTV actuators 

3D coil current and NBI power (actuators)!

t (s)!

•  This case uses pre-programmed 3D coil 
current and NBI feedback 

Rotation evolution vs. desired!
rotation setpoints!
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Outline 

•  FY-14 control research to support milestones and 
five year plan research 

•  Research operations preparations 
•  Scenario and control research activities for the first 2 

years of operations 
–  Long-Pulse and High Current Scenarios 
–  Non-Inductive Scenarios 
–  Profile Control Research 
–  Heat Flux Control 
–  Disruption Avoidance 
–  NBCD Studies 

Modeling of non-inductive start-up/ramp-up discussed in talk by F. Poli.!



NSTX-U! NSTX-U PAC 35 – ASC and Research Operations Prep., S.P. Gerhardt  (6/11/2014)! 10 

Operations Team Making Great Progress in Preparing the 
Facility for Research: Diagnostics 

10 

New SSNPAs!

Bay G “cerberus” !
FIReTIP interferometer, 
High-K Scattering, VB 

diagnostic!
(Note: FIReTIP will be the primary 
measurement for density control)!

•  CHERS, FIDA, MSE systems reinstalled 
and undergoing calibration!

•  MPTS Upgrade on-track to support first 
research operations in March!

•  New 17 channel Langmuir probe arrays 
in each of upper and lower divertors!

•  MAPP probe has been fit-up to check for 
interferences with NSTX-U infrastructure!

•  sFLIP rebuilt to accommodate new port!

Bay J !
UT-K and Divertor Spectrometers, 

Upward LITER, UCLA 
Reflectometer and Polarimeter, 

SGI, RF Probe.!

Bay I!
XCS, TGS, IR & Visible 

Cameras, SSNPA, Plasma 
TV, Microwave Imaging, 

QMB, Bolometers!

Combined Bolometer and ME-
USXR Diagnostic!

Bay K!
XEUS, LoWEUS, 

MonaLISA EUV and 
USXR spectrometers!
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Operations Team Making Great Progress in Preparing the 
Facility for Research: Boundary Physics Operations 

11 

Radiative Divertor 
Studies 

•  Two new high-throughput gas delivery systems in the lower 
divertor. 

•  If attractive, can be easily duplicated at other locations and 
in upper divertor 

Fuelling and Density 
Control 

•  All gas valves will be under PCS control 
•  Allowing SGI to be used for density feedback 
•  Divertor injectors for radiation control 

Boronization •  New engineer with extensive experience in hazardous gas 
handling recently hired. 

•  Anticipate that a new boronization system will be available 
for research operations 

Lithium Evaporators 
(LITERs) 

•  Evaporators carefully stored 
during the outage. 

•  New lab being developed for 
LITER filling & maintenance 

•  Lithium chemist 
hired to oversee the 
safe and efficient 
deployment of these 
technologies. Granule Injectors for 

NSTX 
•  Use UIUC technique for making 

granules under mineral oil. 
•  New injector almost assembled 
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New Digital System Provides Comprehensive Coil Protection 

•  Protects the NSTX-U coils and 
mechanical structure against 
electromagnetic loads 

•  Computes forces and 
stresses in realtime based on 
reduced models of the full 
mechanical structure 

•  Redundant systems 

•  Full commissioning system 
will be a key part of early 
operations  

 

“DCPS” software testing is being performed right now  !

Coil and Plasma 
Current 

Measurements!

Realtime 
Acquisition #1!

Realtime 
Acquisition #2!

Stand Alone 
Digital Coil 
Protection 
Computer!

Digital Coil 
Protection & 

Plasma Control 
Computer!

Level-1 Fault 
Interface!

Power Supply 
Suppress and 

Bypass!

Rectifier 
Hardware 
Controls!
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Pre-
operational 
test of 
subsystem
s (PTP’S) 

Activity 
Certification 
Committee 
(ACC) 
review 

PU 
Operational 
Readiness 
Assessments 
(ORA) 

Integrated 
system test 
procedure 
(ISTP) (per 
OP-NSTX-02 
rev 14) 

Final Preparation 
for Research 

Campaign"

CD-4 
Construction 

Project"
Complete"

NSTX-U ISTP, Commissioning, and Startup will follow a similar process 
as NSTX initial commissioning and startup from February 1999. 

Plan for a Smooth Transition from Construction to Research 
Operations 

Activity Certification 
Committee (ACC) 

•  representatives from PPPL 
Engineering, Research, 
Safety, and the DOE 
Princeton Area Office,  

•  review newly installed 
subsystems before 
commissioning.  

•  System reviews are 
performed at completion of 
construction activities.  

Operational Readiness 
Assessment (ORA)  

•  Led by the Princeton 
University,  

•  external committee 
review based on ACC 
and QA Audit reports, on 
site visits, before start-
up. 

Safety Certificates allowing Power and then Plasma Operation 
issued following recommendations of the ORA."
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Provisional Schedule for the FY15 Research Campaign 



NSTX-U! NSTX-U PAC 35 – ASC and Research Operations Prep., S.P. Gerhardt  (6/11/2014)! 15 

Provisional Schedule for the FY15 Research Campaign 

Data Acquisition Commissioning for Diagnostics!
Ex-Vessel Diagnostic Installations!
Gas Delivery System Final Checks!

Magnetics Debugging!
Beamline #1 Final Checks!
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Provisional Schedule for the FY15 Research Campaign 

Data Acquisition Commissioning for Diagnostics!
Ex-Vessel Diagnostic Installations!
Gas Delivery System Final Checks!

Magnetics Debugging!
Beamline #1 Final Checks!

Magnetic Calibrations!
MSE Calibrations!
CHERS Calibrations!
Boronization!
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Provisional Schedule for the FY15 Research Campaign 

Commissioning!
Ip<=1.0 MA, BT<=0.5!

•  Breakdown and current ramp 
scenarios!

•  EFIT & rtEFIT Reconstructions!
•  Shape & position control!
•  Reliable H-mode!
•  Diagnostic operations!
•  DCPS under plasma operations!

Boronizaton +He GDC for PFCs!

Data Acquisition Commissioning for Diagnostics!
Ex-Vessel Diagnostic Installations!
Gas Delivery System Final Checks!

Magnetics Debugging!
Beamline #1 Final Checks!

Magnetic Calibrations!
MSE Calibrations!
CHERS Calibrations!
Boronization!
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Provisional Schedule for the FY15 Research Campaign 

Commissioning!
Ip<=1.0 MA, BT<=0.5!

•  Breakdown and current ramp 
scenarios!

•  EFIT & rtEFIT Reconstructions!
•  Shape & position control!
•  Reliable H-mode!
•  Diagnostic operations!
•  DCPS under plasma operations!

Boronizaton +He GDC for PFCs!

18 Run 
Weeks with 
Contingency!

Data Acquisition Commissioning for Diagnostics!
Ex-Vessel Diagnostic Installations!
Gas Delivery System Final Checks!

Magnetics Debugging!
Beamline #1 Final Checks!

Research Operations!
LITERs when the operational status allows and physics program desires!

Continued discharge, control, and diagnostic commissioning!

Magnetic Calibrations!
MSE Calibrations!
CHERS Calibrations!
Boronization!
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•  1st year goal: operating points with forces up to ½ the way between NSTX 
and NSTX-U, ½ the design-point heating of any coil 

–  Will permit up to ~5 second operation at BT~0.65 

•  2nd year goal: Full field and current, but still limiting the coil heating 
–  Will revisit year 2 parameters once year 1 data has been accumulated 

•  3rd year goal: Full capability 

NSTX 
(Max.) 

FY 2015 
NSTX-U 

Operations 

FY 2016 
NSTX-U 

Operations 

FY 2017 
NSTX-U 

Operations 

Ultimate 
Goal 

IP [MA] 1.2 ~1.6 2.0 2.0 2.0 
BT [T] 0.55 ~0.8 1.0 1.0 1.0 

Allowed TF I2t [MA2s] 7.3 80 120 160 160 

Longest IP Flat-Top at 
max. I2t, IP, and BT [s] 

~0.4 ~3.5 ~3 5 5 

Strategy for Achieving Full NSTX-U Parameters 
After CD-4, the plasma operation could quickly access new ST regimes	  

Repair of the motor generator weld cracks to finsh in July 2014, facilitated by 
incremental funding in FY14 
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Operation Tools for Density & Impurity Control  

Out Years: Utilize Cryo-pumping and Partial NCC!

Boronized PFC Studies 
–  Plan to start NSTX-U operations 

with TMB. 
– Utilize regimes with natural ELMs 

to control impurity accumulation 
–  Between-shot He glow for wall 

conditioning 
– Deuterium inventory likely to rise 

throughout the discharge 

Lithiated PFC Studies 
– High-τE, ELM-free regimes w/ Li 

conditioning 
–  Pulsed 3D fields or lithium granules 

for ELM pacing to provide impurity 
control 

– Deuterium inventory likely well 
controlled, but unclear if target 
Zeff~2 can be achieved 

Both Scenarios:! Realtime Density Measurements via FIReTIP!
Supersonic Gas Inj. for Density Control!

Years 1 & 2 of ops.: Examine Wall Conditioning, Fueling, and ELM Pacing !
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Outline 

•  FY-14 control research to support milestones and 
five year plan research 

•  Research operations preparations 
•  Scenario and control research activities for the first 2 

years of operations 
–  Long-Pulse and High Current Scenarios 
–  Non-Inductive Scenarios 
–  Profile Control Research 
–  Heat Flux Control 
–  Disruption Avoidance 
–  NBCD Studies 
 

Modeling of non-inductive start-up/ramp-up discussed in talk by F. Poli.!

Thrust #1 of 5YP!

Thrust #2 of 5YP!

Thrust #3 of 5YP!

Thrust #4 of 5YP!
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Profile Control Will Be Developed to Support Scenario 
Development and Optimization 

•  Plans for FY14 
–  Finalize observer/controller designs for βN+li, βN+q 
–  Extend rotation control design to NSTX-U beams sources 

•  Plans for FY15 
–  Validate NBCD predictions 

•  Described in three more slides 
–  Measurements: 

•  Complete realtime Vφ measurements 
•  Test realtime MSE measurements 

–  Implement current profile observer in PCS 
–  First βN+li control studies 
–  Finalize rotation control design and begin implementation 

•  Plans for FY16 
–  Begin closed loop rotation control experiments 
–  Begin implementation of MSE constraint in rtEFIT for improved 

reconstruction. 
•  Make first assessment of βN+qmin control if possible 

Supports Milestones 
R14-3, 15-3, 16-4"
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Research Will Focus on Optimizing the 100% Non-Inductive 
Operating Point 

•  Fully relaxed non-inductive operating 
points have been explored with free-
boundary TRANSP calculations 
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Operation 
Year 

BT [T] Current 
Goal [kA] 

Duration 
Goal 

2015 0.75 ~600-800 A few τE 

2016 0.75-1.0 ~600-1000 1-2 τR 

Out-Years 1 800-1300 Up to 4.5 s 
at lower IP 

Research Timeline for 100% 
Non-Inductive Scenarios"

S.P. Gerhardt, et al, Nuclear Fusion 52 083020 (2012) 

R16-4!

•  These scenarios, obtained at first with 
an inductive ramp-up, will provide a 
target for non-inductive ramp-up 
studies!

•  See talk by F. Poli !
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ASC Group Will Develop High-Current and Long Pulse 
Scenarios For Physics Exploration 
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BT=0.75 T, 8-10 Second Discharge 
Scenarios Limited by qmin>1.1 or OH Coil I2t!
2 Confinement and 2 Profile Assumptions!

!

3 x Modulated 80 kV Beams!

6x65 kV Beams!

•  Two types of partial inductive operation: 
–  High-IP operation for low collisionality and 

divertor heat flux studies 
–  Long pulse for particle retention and 

disruptivity studies 
•  FY15: Re-optimize startup for reduced 

fueling and low collisionality.  
–  Optimize fueling, ramp-rate, error field 

correction, torque input. 

•  FY16: Develop longer pulse and higher 
current operations. 

–  Learn to run the 2MA scenarios within the 
DCPS operating envelope. 

–  Assess long-pulse operations within the 
pumping and particle control tools available. 

•  High-IP & long pulse development will be 
connected to progress in: 
–  Particle Control 
–  Heat flux mitigation 

Longest Ever 
NSTX Discharge"

Addresses milestone R15-3!
Supports milestone R15-1!
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Snowflake Geometry and/or Divertor Radiation Will Be 
Developed to Support High-Current Operation 

•  Roughly speaking, exceeding 1.5 MA and 10 
MW will require strong divertor radiation or 
large flux expansion. 
–  See backup slides. 

•  Physics of these techniques to be covered in 
Boundary Physics talk 

•  Control development plans  
–  FY15 research: 

•  Bring rtEFIT, ISOFLUX and strikepoint control back online 
•  Implement dual X-point tracking software and make first tests of snowflake divertor control 
•  Develop realtime density measurement with FIReTIP interferometer 
•  Off-line development of diagnostics relevant for radiative divertor control 

–  FY16 research 
•  Finish tuning of snowflake divertor controller 
•  Assess magnetic balance control in the presence of 4 X-points 
•  Develop the realtime measurements for divertor radiation control 
•  Commission density control with FIReTIP and SGI 

 

Snowflake Divertor in NSTX-U!
Increases divertor volume and flux 

expansion. !

Supports Milestone R16-1"
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Disruption Avoidance Via Soft Landing Will be Developed 

 
•  FY15 Research Plan 

–  Implement basic detector in PCS, and design 
architecture of control response 

–  Assess accuracy of predictor for NSTX-U disruptions, 
and refine as necessary 

–  Do initial tests of predefined automated rampdowns 
•  FY16 Research Plan 

–  Do first closed loop testing of soft landing algorithms 
–  Refine disruption detector algorithm 

0 200 400 600
Warning Time, tquench-twarn [ms]
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200

250
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e

3 Level Warning Rule
2 points, 1.0% late, 20.5% False Positive
6 points: 4.8% late, 2.5% False Positive

a)
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e

6 Level Warning Rule
5 points, 0.9% late, 14.2% False Positive
10 points: 3.7% late, 2.8% False Positive

b)
 
•  Disruption detection algorithms have been 

developed using NSTX data!
–  Compare diagnostic data to thresholds & assign 
“penalty points” when thresholds are exceeded!

–  Sum the “penalty points”, and declare a warning 
when the point total exceeds a given threshold!

•  Provides a foundation for disruption detection 
in NSTX-U 

S.P. Gerhardt, et al., Nuclear Fusion 53, 063021 (2013)!

Connections to MS TSG:!
•  n>=1 control, including disruption 
avoidance scenarios, covered by 
MS TSG.!
•  MGI physics covered by MS TSG!
"

Supports 2016 JRT"
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Optimization of Beam Current Drive Will Be Addressed 

•  Study the conditions for classical 
beam current drive 

–  Can anomalous diffusion be used for 
scenario optimization? 

•  FY15 Research 
–  Verity the expected variations of the q-

profile with different beam combinations. 
•  FY16 Research 

–  Continue verification of q-profile control via 
NBCD 

–  Begin to assess if fast ion redistribution can 
help to elevate qmin.  

Red: Internal Modes Unstable 
Green: stable 
Black: External modes unstable 
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All: Einj=90 kV, Pinj=8.4 MW, IP=800 kA, BT=1.0 T, H98y,2=1, fGW=0.72
Rtan=[50,60, 70, 130] cm, qmin=2.47, fNI=0.87
Rtan=[50,60, 120,130] cm, qmin=2.11, fNI=0.92
Rtan=[60,70, 110,120] cm, qmin=1.11, fNI=0.98
Rtan=[70,110,120,130] cm, qmin=1.51, fNI=0.99

800 kA and 1 T"
[50,60,70,130] cm"
[50,60,120,130] cm"
[60,70,110,120] cm"
[70,110,120,130] cm"

qmin vs. H98(y,2) and fGW!

Pressure Peaking vs. H98(y,2) and fGW!

n=1 Stability vs. H98(y,2) and fGW!
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Summary 

•  Making excellent progress in developing profile 
control schemes for NSTX-U 
–  Efforts led by Lehigh U., ORISE post-doc and PU 

graduate student with PPPL, CU, & GA support 

•  Developing the operational tools and plans for a 
successful research campaign in FY15 

•  Research plan has been formulated to support the 
FY15 & 16 high-priority goals 
–  Discharge development 
–  Scenario control 
–  Disruption avoidance 
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Backup 
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Gas Delivery System Layout 

ABCDEFGHIJKL

NBI

ABCDE FGHIJKL S.P. Gerhardt
sgerhard@pppl.gov
5-16-2014

Port Assignment for FY 2015  (Pressure measurement, gas delivery, GDC)
Many Port Cover Details Are Incorrect...See Diagnostic Drawing

CHI-G gas injector/Penning Gauge -1CHI-K gas injector

Penning Gauge -4

Fueling Injector - 2

Fueling Injector #1

Penning Gauge -2

MGI-4

Fueling Injector-3 MIG-1 MIG-2

GPI Gas Injector -1

Impurity Gas Injector -2

DivL - C

MIG-5
(Future)

DivL - I

SGI
(Note Likely 
Interferences)

Spare

Spare

MGI - Massive Gas Injector
MIG - Micro Ion Gauge
DivU  - Upper Divertor injector
DivL- Lower Divertor injector

GPI - Gas Puff Imaging 
CHI - Co-axial Helicity Injection
SGI - Super Sonic Gas Injector
Penning Gauge

MGI #1: Lower 180  Degree Organ Pipe
MGI #2: Lower 15 Degree Organ Pipe
MGI #3: Upper 345 Degree Organ Pipe
Penning #3: Lower 240 Degree Organ Pipe

Gauges onTVPS Pumping  Ducts :
Ion Gauge -1
Ion Gauge-2
Capacitance Manometer 1 (1 Torr)
Capacitance Manometer 2 (10 Torr)
Capacitance Manometer 3 (1000 Torr)
MIG-4 (On Duct)
MIG-3 (On  Bay K Spool Piece Flange, midplane)

CS-Mid-125: 0.125" tube, Bay C
CS-Mid-250: 0.25" tube, Bay I
CS-Shoulder-125: 0.125" tube, Bay D
CS-Shoulder-250: 0.25" tube, Bay J

Gauges and Injectors on Inner Vessel  (see ED1324) Definitions

Penning Gauge -5

GPI Filaments
GDC Filaments
GDC Anode
On 2 3/4 flanges on 
Bay-L Truncated 
Cylinder

GDC Filaments
GDC Anode

5
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Pursue 100% Non-Inductive Current at Progressively  
Higher IP and BT 

TRANSP Projections for 100% Non-Inductive 
Scenarios!

Each polygon for a given engineering configuration, 
multiple profile and confinement assumptions!

NSTX Data!

NSTX Data!

NSTX Data!

NSTX Data!

End of year 
1 target"

BP, MS TSGs!

•  Free-Boundary TRANSP calculations of 
NSTX-U operations points. 

–  See: S.P. Gerhardt, et al, Nuclear Fusion 52 
083020 (2013) 

BT [T] Pinj [MW] IP [MA] Heating 
Duration [s] 

0.75 6.8 0.6-0.8 5 
0.75 8.4 0.7-0.85 3 
1.0 10.2 0.8-1.2 5 
1.0 12.6 0.9-1.3 3 
1.0 15.6 1.0-1.5 1.5 

Projected Non-Inductive Current Levels 
for κ~2.85, A~1.75, fGW=0.7!
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Simplified Current Profile Evolution Model 
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Electron Density:" Electron Temperature:"
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Beam Driven Current:"
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Scenario Oriented Parameter Models:"
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We Anticipate The Non-Inductive Current Level at BT=1.0 T 
and Pinj=12.6 MW To Be Between ~900 & ~1300 kA 

•  Fix: 1.0T, Pinj=12.6 MW, fGW=0.72!
•  Fix: A=1.75,   κ=2.8!
•  Determine the non-inductive current level for 2 confinement 

and 2 profile assumptions…yields 4 different projections. 

Dashed: ITER-98 confinement 
scaling!

!
!

Solid: ST confinement scaling!

€ 

τ98y,2∝IP0.93BT0.15n e
0.41PLoss
−0.69

€ 

τST∝IP
0.57BT
1.08n e
0.44PLoss
−0.73Broad, H98=1"

Narrow, H98=1"

Broad, HST=1"

Narrow, HST=1"

Confinement Profiles IP [kA] βN qmin 
H98=1 Broad 975 4.34 1.5 

HST=1 Broad 1325 5.32 2.0 

H98=1 Narrow 875 4.87 1.4 

HST=1 Narrow 1300 5.97 2.1 

Narrow, H98=1"
Broad, H98=1"

Narrow, HST=1"

Broad, HST=1"

Narrow, HST=1"
Broad, HST=1"

Broad, H98=1"

Narrow, H98=1" (S. Kaye, NF 2006)!

Thrust #1"
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Full Utilization of the NSTX-U Will Require Heat Flux 
Mitigation Solutions 

•  Thermal stresses in target tiles can exceed ATJ graphite limits. 
–  Inner horizontal target tiles qualified for 5 sec operation at Qave=5 MW/m2 

•  Desire to avoid tile surface temperatures exceeding Tmax~1200 C. 
•  Conservative assumption: 

•  Primary solutions:  

Discharge Parameters Worst-Case Standard 
DN Divertor 

fexp=15 & fdiv=0.4 

fexp=60 & fdiv=0.4 
or 

fexp=15 & fdiv=0.1 

IP [MA] Pinj [MW] Heating 
Duration [s] 

QPk  
[MW/m2] 

Time to 
Tmax [s] 

QPk  
[MW/m2] 

Time to 
Tmax [s] 

0.75 10.2 5.0 6 12.6 1.5 200 
1.5 10.2 5.0 18 1.4 4.5 22 
2.0 10.2 5.0 28 0.5 7 8.7 

1.5 15.6 1.5 27 0.6 7 9.3 
2.0 15.6 1.5 43 0.25 11 4.0 

Broadening the heat channel (fexp) via the snowflake divertor!
Increasing the fraction of radiated power (decreasing fdiv)!
"

BP TSG!

€ 

λq = 0.92IP
−1.6 QPk =

Pheat fdiv
2πRλq fexp sin(θ )

Qave = 0.63QPk
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NSTX-U Will Have Significant Actuators For Profile  
Control Studies 

Torque Profiles From 6 Different NB Sources!

Neutral "
Beams"
(TRANSP)"

Rotation Profile Actuators!

Largest Rtan"

Smallest Rtan"

Zhu, et al., PRL!

(n=3)!
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All: Einj=90 kV, Pinj=8.4 MW, IP=800 kA, BT=1.0 T, H98y,2=1, fGW=0.72
Rtan=[50,60, 70, 130] cm, qmin=2.47, fNI=0.87
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Rtan=[60,70, 110,120] cm, qmin=1.11, fNI=0.98
Rtan=[70,110,120,130] cm, qmin=1.51, fNI=0.99
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Variations in Outer Gap!

Variations in Beam Sources !
800 kA Partial Inductive, 87% < fNI < 100% !

27    22    17    12    7     2"
Outer Gap"

800 kA and 1 T"
[50,60,70,130] cm"
[50,60,120,130] cm"
[60,70,110,120] cm"
[70,110,120,130] cm"

q-Profile Actuators!
Thrust #2"

MS, EP TSGs!

Milestone R14-3"

Measured and Calculated Torque Profiles 
from 3D Fields!
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Optimizing the Early Discharge Evolution Will Play an Important 
Role in Achieving Low Collisionality at High-Current 

•  Timing and magnitude of fueling has profound impact on discharge evolution, will 
be optimized in NSTX-U. 

–  Will slower IP ramps w/ larger solenoid facilitate reduced fueling? 
–  Will improved solenoid design and reduced error fields improve lower-density 

startup. 
–  Will the extra torque from the new beams reduce prevalence of locking? 
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132847: Fueled from low-field side!
132850: Fueled from both low- and high- field sides !

BP, MS TSGs!

Milestone R14-1!




