

Supported by

Advanced Scenarios and Control Overview Status and Plans for NSTX-U Research Operations

Stefan Gerhardt

and the NSTX Research Team

NSTX-U PAC 35 B318, PPPL 6/11/2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Advanced Scenarios and Control Group Goals

ASC Programmatic Goal From The 5 Year Plan:

Develop the basis for integrated, steady-state operation and axisymmetric control for next-step STs, while helping resolve key scenario and control issues for ITER

ASC Operational Goal From The 5 Year Plan:

Establish stationary, 100% non-inductive operation, and partial inductive operation up to $I_P=2$ MA, for 5 seconds over a wide range of Greenwald fractions, collisionalities, and β values

This talk will focus on research and operations aspect in FY14-FY16 targeting these goals

Outline (organized chronologically)

- FY-14 control research to support milestones and five year plan research
- Research operations preparations
- Scenario and control research activities for the first 2 years of operations
 - Long-Pulse and High Current Scenarios
 - Non-Inductive Scenarios
 - Profile Control Research
 - Heat Flux Control
 - Disruption Avoidance
 - NBCD Studies

Modeling of non-inductive start-up/ramp-up discussed in talk by F. Poli.

Outline (organized chronologically)

• FY-14 control research to support milestones and five year plan research

R14-3 Milestone

Develop advanced axisymmetric control techniques in sustained high performance plasmas Supports five year plan thrust 2 goals

Current Profile Control

Dan Boyer (ORISE Fellow) and E. Schuster Group (Lehigh U.)

Rotation Control

Collaboration with PU Mechanical and Aerospace Engineering Primary effort by I. Goumiri (graduate student)

TRANSP is the Primary Tool for Full-Physics Modeling

Running code with an "expert file" that allows it to be used as a virtual experiment

Reduced Model For Current Profile Evolutions Will Guide Profile Control Design

- Control-oriented dynamic model based on magnetic diffusion equation
 - Fixed model parameter profile shapes; magnitudes scale with global parameters
 - Electron density and temperature, resistivity, non-inductive current drive, bootstrap current
 - Fixed magnetic geometry assumed
- Used to design dynamic observer for profile estimation
 - Improves real-time measurement quality (denoise, account for non-converged rtEFITs)
 - Enables preliminary control experiments prior to real-time MSE
- Reduced further for control design
 - Linearized around operating point to obtain state-space model for modern control design
- Process similar to that used in successful q-profile control at DIII-D

Dan Boyer, ORISE + Lehigh U. Control Collaboration

R14-3

First Use of Model is For Combined $\beta_N \& I_i$ Controller

- Optimal control, considering six individual beams as feedback actuators
- Plans for FY14
 - Validate profile estimation scheme using NSTX data.
 - Explore controllable range of variation.
 - Design controllers for beta and q profile
 - Simulate in TRANSP using expert file
 - Incorporate additional feedback actuators (density, outer gap, I_p)
 - Prepare PCS algorithms for:
 - β_N & Ι_i
 - β_N & q

R14-3

Dan Boyer, ORISE + Lehigh U. Control Collaboration

Non-resonant Neoclassical Toroidal Viscosity (NTV) physics will be used for the first time in rotation feedback control

Momentum force balance – ω_{ϕ} decomposed into Bessel function states

$$\sum_{i} n_{i} m_{i} \left\langle R^{2} \right\rangle \frac{\partial \omega}{\partial t} = \left(\frac{\partial V}{\partial \rho} \right)^{-1} \frac{\partial}{\partial \rho} \left[\frac{\partial V}{\partial \rho} \sum_{i} n_{i} m_{i} \chi_{\phi} \left\langle \left(R \nabla \rho \right)^{2} \right\rangle \frac{\partial \omega}{\partial \rho} \right] + T_{NBI} + T_{NTV}$$

NTV torque:

$$T_{NTV} \propto K \times f\left(n_{e,i}^{K1}T_{e,i}^{K2}\right)g\left(\delta B(\rho)\right)\left[I_{coil}^{2}\omega\right]$$
 (non-linear)

I. Goumiri (PU), S.A. Sabbagh (Columbia U.), D.A. Gates, S.P. Gerhardt (PPPL)

Plasma rotation control has been demonstrated for the first time with TRANSP using NBI and NTV actuators

NSTX-U

Outline

- FY-14 control research to support milestones and five year plan research
- Research operations preparations
- Scenario and control research activities for the first 2 years of operations
 - Long-Pulse and High Current Scenarios
 - Non-Inductive Scenarios
 - Profile Control Research
 - Heat Flux Control
 - Disruption Avoidance
 - NBCD Studies

Modeling of non-inductive start-up/ramp-up discussed in talk by F. Poli.

Operations Team Making Great Progress in Preparing the Facility for Research: Diagnostics

New SSNPAs

Combined Bolometer and ME- • USXR Diagnostic

- CHERS, FIDA, MSE systems reinstalled and undergoing calibration
- MPTS Upgrade on-track to support first research operations in March
- New 17 channel Langmuir probe arrays in each of upper and lower divertors
- MAPP probe has been fit-up to check for interferences with NSTX-U infrastructure
- sFLIP rebuilt to accommodate new port

Bay G "cerberus" FIReTIP interferometer, High-K Scattering, VB diagnostic (Note: FIReTIP will be the primary measurement for density control)

<u>Bay J</u> UT-K and Divertor Spectrometers, Upward LITER, UCLA Reflectometer and Polarimeter, SGI, RF Probe.

<u>Bay I</u> XCS, TGS, IR & Visible Cameras, SSNPA, Plasma TV, Microwave Imaging, QMB, Bolometers

<u>Bay K</u> XEUS, LoWEUS, MonaLISA EUV and USXR spectrometers

Operations Team Making Great Progress in Preparing the Facility for Research: Boundary Physics Operations

Radiative Divertor Studies	 Two new high-throughput gas delived divertor. If attractive, can be easily duplicated in upper divertor 	ery systems in the lower ed at other locations and					
Fuelling and Density Control	 All gas valves will be under PCS control Allowing SGI to be used for density Divertor injectors for radiation control 	ontrol / feedback rol					
Boronization	 New engineer with extensive expension handling recently hired. Anticipate that a new boronization for research operations 	rience in hazardous gas system will be available					
Lithium Evaporators (LITERs)	 Evaporators carefully stored during the outage. New lab being developed for LITER filling & maintenance 	• Lithium chemist hired to oversee the safe and efficient deployment of these					
Granule Injectors for NSTX	 Use UIUC technique for making granules under mineral oil. New injector almost assembled 						

New Digital System Provides Comprehensive Coil Protection

- Protects the NSTX-U coils and mechanical structure against electromagnetic loads
- Computes forces and stresses in realtime based on reduced models of the full mechanical structure

Redundant systems

Full commissioning system will be a key part of early operations

"DCPS" software testing is being performed right now

Plan for a Smooth Transition from Construction to Research Operations

NSTX-U ISTP, Commissioning, and Startup will follow a similar process as NSTX initial commissioning and startup from February 1999.

Safety Certificates allowing Power and then Plasma Operation issued following recommendations of the ORA.

	Octob	er 2014	Ļ	N	lovem	ber 201	14		Dece	mber	2014			Januar	y 2015	5	Ī
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
											Holl	iday					
Uţ	ograde Pr	oject (CS	i Installat C	tion, TF F commissi	Flex. Con ioning, P	inections ump-dov	& Lead I vn and L	Extensior eak Chec	ns, NB Co k)	onditioni	ng, Rectif	fier	CS Bake, GDC	ISTP	CD-4	Facilit While Vac	y Work Under uum

F	February 2015 N						15			April	2015		May 2015				
18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	
	MPTS Rayleigh Raman		Bake	Out		ISTP		Commi	sioning		1	1	Maint.	1	1	1	

June 2015			July 2015					Augus	st 2015		S	epteml	ber 20 1	15		Total		
35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	
Maint.	1	1	1.1	Maint.	1.1	1.1	1.1	1.1	Maint.	1.1	1.1	1.1	1.1	1.1	vent	Out (Calibr Inspec Upgr	age ations, ctions, ades)	18

	Octobe	er 2014		N	ovemb	oer 201	4		Dece	mber	2014			Januar	y 2015	•	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
											Holli	day					
Ur	ograde Pr	oject (CS	Installati Co	on, TF F ommissi	lex. Con oning, P	nections ump-dow	& Lead E n and Le	xtension ak Check	is, NB Co <)	nditionir	ng, Rectif	ier	CS Bake, GDC	ISTP	CD-4	Facility While Vacu	y Work Under uum
Data Acquisition Commissioning for Diagnostics Ex-Vessel Diagnostic Installations Gas Delivery System Final Checks Magnetics Debugging Beamline #1 Final Checks																	
		Februa	ary 20 ⁻	15		M	arch 2	015			Apri	2015			May	2015	
	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
	MPTS Rayleigh Bake Out Raman						ISTP		Comm	isioning		1	1	Maint.	1	1	1

	June 2015				July 2015					Augus	st 2015	i	September 2015					Total
35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	
Maint.	1	1	1.1	Maint.	1.1	1.1	1.1	1.1	Maint.	1.1	1.1	1.1	1.1	1.1	vent	Out (Calibr Inspec Upgr	age ations, ctions, ades)	18

	June 2015				July 2015				Augus	st 2015		S	epteml	ber 201	15		Total	
35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	
Maint.	1	1	1.1	Maint.	1.1	1.1	1.1	1.1	Maint.	1.1	1.1	1.1	1.1	1.1	vent	Out (Calibr Inspec Upgr	age ations, ctions, ades)	18

Strategy for Achieving Full NSTX-U Parameters

After CD-4, the plasma operation could quickly access new ST regimes

	NSTX (Max.)	FY 2015 NSTX-U Operations	FY 2016 NSTX-U Operations	FY 2017 NSTX-U Operations	Ultimate Goal
I _Р [МА]	1.2	~1.6	2.0	2.0	2.0
Β _τ [T]	0.55	~0.8	1.0	1.0	1.0
Allowed TF I ² t [MA ² s]	7.3	80	120	160	160
Longest I _P Flat-Top at max. I ² t, I _P , and B _T [s]	~0.4	~3.5	~3	5	5

- 1st year goal: operating points with forces up to ½ the way between NSTX and NSTX-U, ½ the design-point heating of any coil
 - Will permit up to ~5 second operation at B_T ~0.65
- 2nd year goal: Full field and current, but still limiting the coil heating
 - Will revisit year 2 parameters once year 1 data has been accumulated
- 3rd year goal: Full capability

Repair of the motor generator weld cracks to finsh in July 2014, facilitated by incremental funding in FY14

Operation Tools for Density & Impurity Control

Years 1 & 2 of ops.: Examine Wall Conditioning, Fueling, and ELM Pacing

Boronized PFC Studies

- Plan to start NSTX-U operations with TMB.
- Utilize regimes with natural ELMs to control impurity accumulation
- Between-shot He glow for wall conditioning
- Deuterium inventory likely to rise throughout the discharge

Lithiated PFC Studies

- High- τ_E , ELM-free regimes w/ Li conditioning
- Pulsed 3D fields or lithium granules for ELM pacing to provide impurity control
- Deuterium inventory likely well controlled, but unclear if target Z_{eff}~2 can be achieved

Both Scenarios:Realtime Density Measurements via FIReTIP
Supersonic Gas Inj. for Density Control

Out Years: Utilize Cryo-pumping and Partial NCC

Outline

- FY-14 control research to support milestones and five year plan research
- **Research operations preparations**
- Scenario and control research activities for the first 2 years of operations
 - Long-Pulse and High Current Scenarios Thrust #1 of 5YP
 - Non-Inductive Scenarios
 - Profile Control Research
 Heat Flux Control
 Thrust #2 of 5YP

 - Disruption Avoidance Thrust #3 of 5YP
 - NBCD Studies Thrust #4 of 5YP

Modeling of non-inductive start-up/ramp-up discussed in talk by F. Poli.

Profile Control Will Be Developed to Support Scenario Development and Optimization

- Plans for FY14
 - Finalize observer/controller designs for β_N +I_i, β_N +q
 - Extend rotation control design to NSTX-U beams sources
- Plans for FY15
 - Validate NBCD predictions
 - Described in three more slides
 - Measurements:
 - Complete realtime V_{ϕ} measurements
 - Test realtime MSE measurements
 - Implement current profile observer in PCS
 - First β_N +I_i control studies
 - Finalize rotation control design and begin implementation
- Plans for FY16
 - Begin closed loop rotation control experiments
 - Begin implementation of MSE constraint in rtEFIT for improved reconstruction.
 - Make first assessment of $\beta_{\text{N}}\text{+}q_{\text{min}}$ control if possible

Supports Milestones R14-3, 15-3, 16-4

Research Will Focus on Optimizing the 100% Non-Inductive Operating Point

 Fully relaxed non-inductive operating points have been explored with freeboundary TRANSP calculations

Research Timeline for 100% Non-Inductive Scenarios

Operation Year	В _т [Т]	Current Goal [kA]	Duration Goal
2015	0.75	~600-800	A few τ_{E}
2016	0.75-1.0	~600-1000	1-2 τ _R
Out-Years	1	800-1300	Up to 4.5 s at lower I _P

- These scenarios, obtained at first with an inductive ramp-up, will provide a target for non-inductive ramp-up studies
- See talk by F. Poli

ASC Group Will Develop High-Current and Long Pulse Scenarios For Physics Exploration

- Two types of partial inductive operation:
 - High-I_P operation for low collisionality and divertor heat flux studies
 - Long pulse for particle retention and disruptivity studies
- FY15: Re-optimize startup for reduced fueling and low collisionality.
 - Optimize fueling, ramp-rate, error field correction, torque input.
- FY16: Develop longer pulse and higher current operations.
 - Learn to run the 2MA scenarios within the DCPS operating envelope.
 - Assess long-pulse operations within the pumping and particle control tools available.
- High-I_P & long pulse development will be connected to progress in:
 - Particle Control
 - Heat flux mitigation

Addresses milestone R15-3 Supports milestone R15-1

 B_T =0.75 T, **8-10 Second Discharge** Scenarios Limited by q_{min} >1.1 or OH Coil I²t 2 Confinement and 2 Profile Assumptions

Snowflake Geometry and/or Divertor Radiation Will Be Developed to Support High-Current Operation

- Roughly speaking, exceeding 1.5 MA and 10 MW will require strong divertor radiation or large flux expansion.
 - See backup slides.
- Physics of these techniques to be covered in Boundary Physics talk
- Control development plans
 - FY15 research:
 - Bring rtEFIT, ISOFLUX and strikepoint control back online
 - Implement dual X-point tracking software and make first tests of snowflake divertor control
 - Develop realtime density measurement with FIReTIP interferometer
 - Off-line development of diagnostics relevant for radiative divertor control
- FY16 research
 - Finish tuning of snowflake divertor controller
 - Assess magnetic balance control in the presence of 4 X-points
 - Develop the realtime measurements for divertor radiation control
 - Commission density control with FIReTIP and SGI

Snowflake Divertor in NSTX-U Increases divertor volume and flux expansion.

Supports Milestone R16-1

Disruption Avoidance Via Soft Landing Will be Developed

- Disruption detection algorithms have been developed using NSTX data
 - Compare diagnostic data to thresholds & assign "penalty points" when thresholds are exceeded
 - Sum the "penalty points", and declare a warning when the point total exceeds a given threshold
- Provides a foundation for disruption detection in NSTX-U
- FY15 Research Plan
 - Implement basic detector in PCS, and design architecture of control response
 - Assess accuracy of predictor for NSTX-U disruptions, and refine as necessary
 - Do initial tests of predefined automated rampdowns
- FY16 Research Plan
 - Do first closed loop testing of soft landing algorithms
 - Refine disruption detector algorithm

S.P. Gerhardt, et al., Nuclear Fusion 53, 063021 (2013)

Connections to MS TSG:

- n>=1 control, including disruption avoidance scenarios, covered by MS TSG.
- MGI physics covered by MS TSG

Supports 2016 JRT

Optimization of Beam Current Drive Will Be Addressed

- Study the conditions for classical beam current drive
 - Can anomalous diffusion be used for scenario optimization?
- FY15 Research
 - Verity the expected variations of the qprofile with different beam combinations.
- FY16 Research
 - Continue verification of q-profile control via NBCD
 - Begin to assess if fast ion redistribution can help to elevate $\ensuremath{\mathsf{q}_{\text{min}}}\xspace$

Summary

- Making excellent progress in developing profile control schemes for NSTX-U
 - Efforts led by Lehigh U., ORISE post-doc and PU graduate student with PPPL, CU, & GA support
- Developing the operational tools and plans for a successful research campaign in FY15
- Research plan has been formulated to support the FY15 & 16 high-priority goals
 - Discharge development
 - Scenario control
 - Disruption avoidance

Backup

Complete Port Allocation

🔘 NSTX-U

Gas Delivery System Layout

Pursue 100% Non-Inductive Current at Progressively Higher I_P and B_T

1.5 a)

- NSTX-U operations points.
 - See: S.P. Gerhardt, et al, Nuclear Fusion 52 083020 (2013)

Projected Non-Inductive Current Levels for κ~2.85, A~1.75, f_{GW}=0.7

Free-Boundary TRANSP calculations of **TRANSP Projections for 100% Non-Inductive Scenarios**

1.0

0.8

Simplified Current Profile Evolution Model

Magnetic Diffusion Equation:

$$\frac{\partial \psi}{\partial t} = \frac{\eta(T_e)}{\mu_0 \rho_b^2 \hat{F}^2} \frac{1}{\hat{\rho}} \frac{\partial}{\partial \hat{\rho}} \left(\hat{\rho} \hat{F} \hat{G} \hat{H} \frac{\partial \psi}{\partial \hat{\rho}} \right) + R_0 \hat{H} \eta(T_e) \frac{\langle \bar{j}_{NI} \cdot \bar{B} \rangle}{B_{\phi,0}} + \frac{\dot{\rho}_b \hat{\rho}}{\rho_b} \frac{\partial \psi}{\partial \hat{\rho}}$$
$$\frac{\partial \psi}{\partial \hat{\rho}} \Big|_{\hat{\rho}=0} = 0, \qquad \qquad \frac{\partial \psi}{\partial \hat{\rho}} \Big|_{\hat{\rho}=1} = -\frac{\mu_0}{2\pi} \frac{R_0}{\hat{G}} \frac{R_0}{\hat{\rho}=1} I(t)$$

Scenario Oriented Parameter Models:

 $\begin{array}{ll} \textit{Electron Density:} & \textit{Electron Temperature:} \\ n_e\left(\hat{\rho},t\right) = n_e^{profile}(\hat{\rho})n_0(t) & T_e\left(\hat{\rho},t\right) = T_e^{profile} \frac{I(t)\sqrt{P_{tot}(t)}}{n_0(t)} \end{array}$

Bootstrap Current:

$$\eta\left(\hat{\rho},t\right) = \frac{k_{\eta}^{prof}\left(\hat{\rho}\right) Z_{eff}}{T_{e}^{3/2}\left(\hat{\rho},t\right)} \qquad \qquad \frac{\langle \bar{j}_{bs} \cdot \bar{B} \rangle}{B_{\phi,0}} = I(t)\sqrt{P_{tot}(t)}k_{bs}^{prof}(\hat{\rho})\left(\frac{\partial\psi(t)}{\partial\hat{\rho}}\right)^{-1}$$

Beam Driven Current:

Resistivity:

$$\frac{\langle \bar{j}_k \cdot \bar{B} \rangle}{B_{\phi,0}} = j_k^{profile} \left(\hat{\rho}\right) \left(\frac{I\sqrt{P_{tot}}}{n_0(t)}\right)^{\alpha_{CD}} \frac{P_k(t)}{n_0^{\beta_{CD}}(t)}$$

We Anticipate The Non-Inductive Current Level at B_T=1.0 T and P_{ini}=12.6 MW To Be Between ~900 & ~1300 kA Thrust #1

Full Utilization of the NSTX-U Will Require Heat Flux Mitigation Solutions

- Thermal stresses in target tiles can exceed ATJ graphite limits.
 - Inner horizontal target tiles qualified for 5 sec operation at Q_{ave} =5 MW/m²
- Desire to avoid tile surface temperatures exceeding T_{max}~1200 C.
- Conservative assumption: $\lambda_q = 0.92I_P^{-1.6} \quad Q_{Pk} = \frac{P_{heat}f_{div}}{2\pi R \lambda_q f_{exp} \sin(\theta)} \quad Q_{ave} = 0.63Q_{Pk}$

Primary solutions: Broadening the heat channel (f_{exp}) via the snowflake divertor Increasing the fraction of radiated power (decreasing f_{div})

Dis	charge Para	meters	Worst-Case DN Div f _{exp} =15 &	e Standard vertor a f _{div} =0.4	f _{exp} =60 & f _{div} =0.4 or f _{exp} =15 & f _{div} =0.1				
I _P [MA]	P _{inj} [MW]	Heating Duration [s]	Q _{Pk} [MW/m²]	Time to T _{max} [s]	Q _{Pk} [MW/m²]	Time to T _{max} [s]			
0.75	10.2	5.0	6	12.6	1.5	200			
1.5	10.2	5.0	18	1.4	4.5	22			
2.0	10.2	5.0	28	0.5	7	8.7			
1.5	15.6	1.5	27	0.6	7	9.3			
2.0	15.6	1.5	43	0.25	11	4.0			

NSTX-U Will Have Significant Actuators For Profile Control Studies

Rotation Profile Actuators

Torque Profiles From 6 Different NB Sources 0.5 Largest R_{tan} Input Torque [µNm/cm³] 0.4 0.3 0.2 0.1 0.0 Smallest R_{tan} -0. 0.0 0.2 0.4 0.6 0.8 1.0 ρ_{pol} **Measured and Calculated Torque Profiles** from 3D Fields 4 116931 (n=3) theory t = 0.360sΓ_{NTV} (N m) 3 2 measured axis 1.3 0.9 1.1 1.5

R (m)

q-Profile Actuators

Zhu, et al., PRL

Thrust #2

NSTX-U PAC 35 – ASC and Research Operations Prep., S.P. Gerhardt (6/11/2014) MS, EP TSGs

Optimizing the Early Discharge Evolution Will Play an Important Role in Achieving Low Collisionality at High-Current

- Timing and magnitude of fueling has profound impact on discharge evolution, will be optimized in NSTX-U.
- Will slower $I_{\rm P}$ ramps w/ larger solenoid facilitate reduced fueling?
- Will improved solenoid design and reduced error fields improve lower-density startup.
- Will the extra torque from the new beams reduce prevalence of locking?

Milestone R14-1

