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NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

NSTX-U experiments will guide development of ST-FNSF 
strategies for non-inductive ramp-up and sustainment 
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1. Develop and understand non-inductive start-up and ramp-up  
(overdrive) to project to ST-FNSF with small/no solenoid 
–  Contributes to the finalization of the EC system design 

–  Contributes to optimized use and synergy of RF and NBI in ramp-up  
2. Demonstrate 100% non-inductive sustainment at performance that 

extrapolates to ≥ 1MW/m2 neutron wall loading in FNSF 
–  Contributes to the optimization of profile evolution and control in the ramp-up 

to access advanced operation 

 
“the gap in demonstrating non-inductive startup and ramp-up is larger than the 

gap in demonstrating 100% non-inductive sustainment in the ST” [PAC33] 
Also emphasized in FESAC TAP 2008, RENEW 2009 



NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

Detailed modeling of ramp-up phases informs plans for 
dedicated experiments in FY15-16 
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~0.75-1!

~0.3-0.4!

~0.5!

I [MA]!

Time!

NBI + bootstrap!

NBI + FW + bootstrap!

CHI!
(R.Raman)!

HHFW!
ECH!

NBI!

Challenges in ramp-up modeling/experiments 
1.  Heat CHI target plasma to maximize efficiency of external H/CD sources 

2.  Combine RF and NBI, aim at best synergy of sources 

3.  Minimize beam losses at low current => density control, heat start-up plasma 

4.  Optimize NBI source combination for profile control 

Tailor kinetic and current profiles to access target flattop plasmas (see Gerhardt) 

(and do this while maintaining the discharge in the MHD stable operational space) 

Up to 
15MW!

1MW!
4MW!

P [MW]!



NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

H/CD sources are evolved self-consistently in TRANSP with 
free-boundary equilibrium solver (Isolver) 
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•  Use NSTX discharges to build-up discharge in NSTX-U geometry 

•  Addressing challenges along the way: 
–  Self-consistent evolution of equilibrium and pressure evolution during 

startup with external H/CD 
–  Confinement level typically H98,y2~1.0-1.2 
–  Thermal transport => either predictive or scale analytic temperature 

profiles (use MMM95 in RF phase, analytic Te and χi=χe in NBI phase) 
–  Particle transport => density profiles are prescribed (0.5-1.0 nGw) 

 
•  ECRH: ray tracing codes (TORAY-GA) 
•  HHFW: full wave code TORIC with Fokker-Planck treatment for 

resonant species 
•  NBI: Monte-Carlo orbit NUBEAM 



NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

~0.75-1!

~0.3-0.4!

~0.5!

Time!

NBI + bootstrap!

NBI + FW + bootstrap!

CHI!
(R.Raman)!

HHFW!

NBI!
Up to 
15MW!

4MW!

P [MW]!

1MW!ECH!
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Time-dependent simulations of EC heating in startup plasma 
support FY15 facility milestone for ECH system design 

•  Without electron heating, CHI current would decay within 5-10ms 

•  expect it to be difficult to couple FW directly to CHI-only target 

Ø  Planned EC-EBW system: 1MW power @28GHz, O-mode heating (see Perkins) 

Ø   The role of EC is to heat CHI plasma to a level where FW and/or NBI can be 
efficiently absorbed 

I [MA]!



NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

Planned ECH system needed to heat CHI targets  
from 10eV to above 500eV in 30ms 
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Ref: NSTX CHIàOH+NBI H-mode discharge #142140 
(Raman, NF2013) 

•  First-pass absorption in low density startup plasma 

•  Simulations confirm that HHFW cannot efficiently heat 
CHI-only target, but HHFW can heat ECH-heated CHI 
target (see lower right) 

•  EC accessibility @ t<100-150ms depending on 
density 
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NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling! 7 7 

Select target scenario (Menard et al, NF 2012, Table I, Gerhardt NF 2012)!
100% NICD (1T/1MA) with 10MW of NBI @0.5-1.0nG, bootstrap fraction 0.61-0.85!
 
•  Use reference discharge #142305, κ~2.55, li(1)~0.5, A~1.55 (Gerhardt, NF 2011) 

•  Assume initial target of 300kA and plasma heated at ~400eV (needed for HHFW) 

•  Use 4MW of HHFW and 10MW of NBI at 80keV 

•  HHFW drives L-H transition and current at low density where NBI shine-thru large 

•  NBI second beam-line ramps current to the target plasma 

Detailed modeling of ramp-up phases highlights 
requirements for dedicated experiments in FY15-16 
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NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

2nd NB line can ramp-up current from HHFW-heated plasma 
and sustain stationary 900kA 
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HHFW used @ t<0.5 to ramp to ~400kA 

ne,lin = 8x1019 m-2 -> ~900kA non-inductive, ~60% bootstrap 

βT~7%, βP~6%, βFAST/βTOT~0.25-0.35, H98~1.2 (τ98~70ms) 
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NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

Results sensitive to Greenwald fraction, which affects the 
beam pressure and shape control 
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•  Second beam line has high efficiency 

•  Peaked deposition profiles at low density (~50%nG) 

 => elongation decreases, li increases 

 => q(0) drops below 1 in the flattop 

 => q(0) drops below 1 during the HHFW phase 
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Li(1)"

q(0)"NBI phase needs optimization: broad deposition 

⇒ Optimize outer gap 

⇒ Beam modulation 

Early phase needs optimization: elevate q(0) 

⇒ Use beams early in the discharge (with RF) 
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NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

Goals FY15: validate simulations for  
non-inductive startup and ramp-up 
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Modeling: 

•  ECRH: TSC CHI startup simulations as initial conditions to improve time-
dependent predictions using ECRH (with SFSU-TSG) 

•  Simulate EC+NBI and EC+FW combinations for CHI target 
•  HHFW: Explore effect of FW phasing on scenarios (with WEP-TSG) 
•  NBI: scan density and temperature and source energy to optimize deposition 
 
Experiments: 
•  NBI: assess NBI injection and CD profiles in targets with 0.5-1.0MA, 0.75T 

with density of 0.5-1.0 Greenwald (R15-2) 
•  Use results from R15-1 (H-mode characteristic, pedestal, see Diallo) to 

improve predictions of H-mode ramp-up plasmas with NBI. 
 

=> experiments, including National Campaign on DIII-D to constrain simulations 
of NSTX-U overdrive ramp-up discharges at 1T with inductive seeding to guide 
experiments in FY16. 



NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

Goals FY16: guide ramp-up experiments with inductive 
seeding 
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R16-3:  Assess FW coupling to NBI and modeling (with WEP and ASC TSGs) 
•  Optimize FW phasing to maximize electron heating (at 300-500kA) 
•  use FY15 simulations to guide experiments and results for model validation. 
 
R16-4: Develop high-non-inductive fraction NBI H-modes for ramp-up and 
sustainment. 

•  Obtain full non-inductive target in flattop phase with ohmic seeding, then 

•  Clamp OH coil current to constant value progressively earlier in time 

Attempt use of FW (phasing for electron heating) and NBI at low current on CHI 
target with inductive seeding (support for SFSU-TSG) 



NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

Summary 
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•  Substantial progress in ramp-up modeling using TRANSP 

–  Compute RF NBI absorption and CD self-consistently for the first time 

–  Use experimental discharges from NSTX for projection 

–  Simulations of the startup phase present computational challenges 

–  Density control is crucial to the scenario solution and to the evolution in 
the ramp-up and flattop sustainment. 

•  Future work: 
–  more physical constraint on surface voltage, use coil currents to drive the 

simulation and control the discharge (shape, gaps, aspect ratio) 

–  Specification of Greenwald fraction vs time in TRANSP simulations 

–  Sensitivity studies on choice of thermal transport models 



NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling! 13 



NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

MMM95 reproduces average amplitude and peaking of 
electron temperature profile during the HHFW phase 
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Profiles averaged over the heating phase 

•  MMM95 reproduces the average amplitude and 
peaking in HHFW discharges and in discharges with 
HHFW+NBI. 

•  Ion temperature overestimated in NBI discharges 

•  Electron temperature too peaked in NBI discharges  



NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

Optimal range of 350-400kA for non-inductive current from 
HHFW in startup plasma conditions  
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NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

Large beam shine-thru at low density prevents use of beam 
on CHI-only target 
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NSTX-U! NSTX-U PAC-35 – non-inductive ramp-up modeling!

Procedure for non-inductive ramp-up experiments 
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•  Start with a fully inductive discharge 

•  Optimize non-inductive fraction                  
(density is critical) 

•  Clamp ohmic at progressively earlier times 
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